• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation the performance of the tin (IV) oxide (SnO2) in the removal of sulfur compounds via oxidative-extractive desulfurization process for production an eco-friendly fuel

Humadi, J.I., Issa, Y.S., Aqar, D.Y., Ahmed, M.A., Ali Alak, H.H., Mujtaba, Iqbal 22 September 2022 (has links)
Yes / Catalysts play a vital role in petroleum and chemical reactions. Intensified concerns for cleaner air with strict environmental regulations on sulfur content in addition to meet economic requirements have generated significant interests for the development of more efficient and innovative oxidative catalysts recently. In this study, a novel homemade nano catalyst (manganese oxide (MnO2) over tin (IV) oxide (SnO2)) was used for the first time as an effective catalyst in removing dibenzothiophene (DBT) from kerosene fuel using hydrogen peroxide (H2O2) as oxidant in catalytic oxidative-extractive desulfurization process (OEDS). The catalyst was prepared by impregnation method with various amount of MnO2 loaded on SnO2. The oxidation step was carried out at different operating parameters such as reaction temperature and reaction time in batch reactor. The extractive desulfurization step was performed by using acetonitrile as solvent under several operating conditions (agitation speed and mixing time). The activity of MnO2/SnO2 catalyst in removing various sulfur compounds from kerosene fuel at the best operating conditions was investigated in this work. The results of the catalyst characterization proved that a high dispersion of MnO2 over the SnO2 was obtained. The experiments showed that the highest DBT and various sulfur compounds removal efficiency from kerosene fuel under the best operating conditions (oxidation: 5% MnO2/SnO2, reaction temperature of 75 0C, and reaction time of 100 min, extraction: acetonitrile, agitation speed of 900 rpm, and mixing time of 30 min) via the catalytic oxidative-extractive desulfurization process was 92.4% and 91.2%, respectively. Also, the MnO2/SnO2 catalyst activity was studied after six consecutive oxidation cycles at the best operating conditions, and the catalyst prove satisfactory stability in terms of sulfur compounds removal. After that, the spent catalyst were regenerated by utilizing different solvents (methanol, ethanol and iso-octane), and the experimental data explained that iso-octane achieved highest regeneration efficiency. / This study was supported by College of Petroleum Processes Engineering, Tikrit University, Iraq and Ministry of Oil, Iraq.
2

Growth Control and Manipulation of Morphology, Crystallinity, and Physical Properties of Tin (IV) Oxide Nanostructures: Granular Nanocrystalline Films and One-Dimensional Nanostructures

Bazargan, Samad January 2011 (has links)
A variety of nanostructures of tin (IV) oxide (TO) are synthesized using two fabrication methods: a solution spin-coating method followed by post-annealing in an oxygen flow and a newly developed catalyst-assisted pulsed laser deposition (PLD) technique. The spin-coating method is used to fabricate granular TO films with monodisperse, stable, ultra-small nanocrystallites (4-5 nm in size), the size of which is found to increase exponentially with post-anneal above 500??C. These nanocrystalline films are conductive and highly transparent, and their bandgap shows broadening due to a high carrier concentration. Their resistivity behavior as a function of temperature in the 50-280 K range can be explained by a two-medium transport model, i.e. transport through the crystalline grains and across the grain boundaries, and through the charge-depletion layer, where a potential barrier is found for transport across the grain boundaries. Electronic transport in these films follows a 3D-variable range hopping model, which reveals an increase in the localization length of carriers with increasing the TAnneal above the onset of exponential growth at TAnneal= 500??C. By homogenously doping Eu3+ in these nanocrystalline films up to a high doping level of ~ 8%, optical luminescence and magnetic orderings can be introduced into these nanocrystalline TO films. Both characteristic Eu3+ emission and defect-related TO emissions are observed in the otherwise transparent TO films upon UV-excitation. In spite of the non-magnetic nature of Eu3+ ions, magnetic orderings appear in the highly doped TO films below 50 K upon the emergence of Eu2Sn2O7 phase. In the second part of this work, we employ a layer of gold nanoislands with controlled sizes (10-50 nm) as catalysts for pulsed laser deposition of TO nanostructures. Highly crystalline TO nanobricks, cuboid nanoparticles, nanowires and nanobelts are obtained for the first time through vapour-solid or vapour-liquid-solid (VLS) mechanisms. Of particular interest are the micron long one-dimensional (1D) nanowires and nanobelts, with the smallest square and rectangular cross-sections, respectively, ever reported. These single-crystalline nanostructures are obtained at relatively low temperatures of 600??C, for nanowires, and 500??C, for nanobelts, and their cross-sectional sizes can be easily controlled by the size of the gold nanoislands. The nanobelts are found to grow along the [100] and [101] axes, while the nanowires appear to grow along the [100] axis. The growth evolution of the nanobelts are also investigated in detail revealing their VLS growth mode and their single-crystalline structure throughout the growth, which opens the prospect of controlling their growth axis and consequently their side-surface planes by pinning the base to the substrate at the desired crystalline orientation. Together, the two fabrication methods developed in the present work offer facile approaches to growing two scientifically and technologically important classes of TO nanostructures, i.e., nanocrystalline film and 1D nanostructures. Thorough characterization of the resulted nanostructured materials using advanced microscopic, spectroscopic and other techniques, including Helium Ion Microscopy, has been provided. Modification of structure, morphology and physical properties of these functional nanostructured materials are also illustrated by controlling the growth parameters and by (Eu-)doping, which pave the way for introducing new properties for applications in chemical sensing, (opto)electronics and displays.
3

Fabrication and Characterization of Planar-Structure Perovskite Solar Cells

Liu, Guoduan 01 January 2019 (has links)
Currently organic-inorganic hybrid perovskite solar cells (PSCs) is one kind of promising photovoltaic technology due to low production cost, easy fabrication method and high power conversion efficiency. Charge transport layers are found to be critical for device performance and stability. A traditional electron transport layer (ETL), such as TiO2 (Titanium dioxide), is not very efficient for charge extraction at the interface. Compared with TiO2, SnO2 (Tin (IV) Oxide) possesses several advantages such as higher mobility and better energy level alignment. In addition, PSCs with planar structure can be processed at lower temperature compared to PSCs with other structures. In this thesis, planar-structure perovskite solar cells with SnO2 as the electron transport layer are fabricated. The one-step spin-coating method is employed for the fabrication. Several issues are studied such as annealing the samples in ambient air or glovebox, different concentration of solution used for the samples, the impact of using filter for solutions on samples. Finally, a reproducible fabrication procedure for planer-structure perovskite solar cells with an average power conversion efficiency of 16.8%, and a maximum power conversion efficiency of 18.1% is provided.

Page generated in 0.0494 seconds