• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Otimização da operação de adsorção no tratamento de efluentes de tingimento de couro

Gomes, Carolina Scaraffuni January 2014 (has links)
Na etapa de tingimento do couro em curtumes, é necessário fazer a aplicação de corantes para obter uniforme e intensa coloração da superfície e, muitas vezes, para que a textura fibrosa do couro seja tingida em profundidade. Esta etapa do processamento do couro pode resultar em efluentes coloridos. A presença de corantes dificulta o tratamento de efluentes através de métodos convencionais e sua reutilização no processo produtivo, pois causaria o tingimento de uma nova partida com cor indesejada. A adsorção é uma operação de tratamento avançada utilizada para aumentar a qualidade final ou viabilizar o reuso de efluentes. Uma de suas maiores vantagens é a possibilidade de uso de materiais de baixo custo no tratamento de efluentes. Neste estudo, resíduos sólidos de curtumes, farelos de couro curtido ao cromo, foram utilizados como adsorvente para tratar um efluente contendo o corante Vermelho Ácido 357 gerado na operação de acabamento molhado, que foi realizada em um fulão em escala piloto. Todos os experimentos de adsorção foram realizados em fulões em escala laboratorial para simular as condições dos curtumes e para facilitar a futura reprodução deste método no curtume. Para otimizar os parâmetros da adsorção foi feita uma otimização multi-resposta. Inicialmente foi utilizado um planejamento fatorial Plackett–Burman para eliminar alguns fatores dos sete importantes parâmetros selecionados: concentração de adsorvente, pH, temperatura, concentração de corante, velocidade de rotação, tempo e diâmetro de partícula. Com este procedimento de triagem, quatro importantes fatores, que tiveram efeito significativo na adsorção, foram selecionados para o próximo passo: concentração de adsorvente, pH, concentração de corante e velocidade de rotação. Posteriormente, foi utilizada uma metodologia de superfície de resposta (MSR) com delineamento composto central rotacional (DCCR). Com base nesses resultados utilizou-se a função desirability para alcançar as condições ótimas de operação e para determinar a capacidade máxima de adsorção no equilíbrio (qe) e a remoção de corante (R). As respostas otimizadas encontradas foram R = 87,37% e qe = 24,74 mg·g-1, nas condições de pH de 2,3; concentração de adsorvente de 12,34 g·L-1; concentração de corante de 131,25 mg·L-1 e velocidade de rotação de 27,5 rpm. / In the leather dyeing step in tanneries, it is necessary to make the application of dyes to obtain uniform and intense color in the surface and often till the fibrous texture of leather is deeply colored. This stage of leather processing results in colored wastewaters. The presence of dyes complicates the treatment of effluents by conventional methods and their reuse in the production process, as it would cause the dyeing of new batch with unwanted color. Adsorption is an advanced treatment operation that is used to increase the final quality or to enable the reuse of wastewater. One of its biggest advantages is the possibility of using low cost materials in wastewater treatment. In this study, solid waste from tanneries, i.e., chromium-tanned leather shaving waste, was used as the adsorbent to treat effluents containing Acid Red 357 dye generated through a wet end process, carried out in a pilot-scale tannery drum. All the adsorption trials were conducted in laboratory-scale tannery drums to simulate the tannery conditions and to facilitate the future industrial reproduction of this method. Multiresponse optimization was used to optimize the adsorption parameters. Plackett–Burman factorial design was used to initially eliminate some factors from the seven selected important parameters: adsorbent concentration, pH, temperature, dye concentration, rotation speed, time, and particle size. Using this screening procedure, four important factors, which had significant effects on the adsorption, were selected for the next step: adsorbent concentration, pH, dye concentration, and rotation speed. Thereafter, a central composite rotatable design (CCRD) experiment was performed as response surface methodology (RSM) with desirability functions to achieve the optimal conditions, and to determine the maximum adsorption capacity at equilibrium (qe) and dye removal (R). The optimized responses were determined to be R = 87.37% and qe = 24.74 mg·g-1, in the following conditions: pH of 2.3, adsorption concentration of 12.34 g·L-1, dye concentration of 131.25 mg·L-1, and rotation speed of 27.5 rpm.
2

Otimização da operação de adsorção no tratamento de efluentes de tingimento de couro

Gomes, Carolina Scaraffuni January 2014 (has links)
Na etapa de tingimento do couro em curtumes, é necessário fazer a aplicação de corantes para obter uniforme e intensa coloração da superfície e, muitas vezes, para que a textura fibrosa do couro seja tingida em profundidade. Esta etapa do processamento do couro pode resultar em efluentes coloridos. A presença de corantes dificulta o tratamento de efluentes através de métodos convencionais e sua reutilização no processo produtivo, pois causaria o tingimento de uma nova partida com cor indesejada. A adsorção é uma operação de tratamento avançada utilizada para aumentar a qualidade final ou viabilizar o reuso de efluentes. Uma de suas maiores vantagens é a possibilidade de uso de materiais de baixo custo no tratamento de efluentes. Neste estudo, resíduos sólidos de curtumes, farelos de couro curtido ao cromo, foram utilizados como adsorvente para tratar um efluente contendo o corante Vermelho Ácido 357 gerado na operação de acabamento molhado, que foi realizada em um fulão em escala piloto. Todos os experimentos de adsorção foram realizados em fulões em escala laboratorial para simular as condições dos curtumes e para facilitar a futura reprodução deste método no curtume. Para otimizar os parâmetros da adsorção foi feita uma otimização multi-resposta. Inicialmente foi utilizado um planejamento fatorial Plackett–Burman para eliminar alguns fatores dos sete importantes parâmetros selecionados: concentração de adsorvente, pH, temperatura, concentração de corante, velocidade de rotação, tempo e diâmetro de partícula. Com este procedimento de triagem, quatro importantes fatores, que tiveram efeito significativo na adsorção, foram selecionados para o próximo passo: concentração de adsorvente, pH, concentração de corante e velocidade de rotação. Posteriormente, foi utilizada uma metodologia de superfície de resposta (MSR) com delineamento composto central rotacional (DCCR). Com base nesses resultados utilizou-se a função desirability para alcançar as condições ótimas de operação e para determinar a capacidade máxima de adsorção no equilíbrio (qe) e a remoção de corante (R). As respostas otimizadas encontradas foram R = 87,37% e qe = 24,74 mg·g-1, nas condições de pH de 2,3; concentração de adsorvente de 12,34 g·L-1; concentração de corante de 131,25 mg·L-1 e velocidade de rotação de 27,5 rpm. / In the leather dyeing step in tanneries, it is necessary to make the application of dyes to obtain uniform and intense color in the surface and often till the fibrous texture of leather is deeply colored. This stage of leather processing results in colored wastewaters. The presence of dyes complicates the treatment of effluents by conventional methods and their reuse in the production process, as it would cause the dyeing of new batch with unwanted color. Adsorption is an advanced treatment operation that is used to increase the final quality or to enable the reuse of wastewater. One of its biggest advantages is the possibility of using low cost materials in wastewater treatment. In this study, solid waste from tanneries, i.e., chromium-tanned leather shaving waste, was used as the adsorbent to treat effluents containing Acid Red 357 dye generated through a wet end process, carried out in a pilot-scale tannery drum. All the adsorption trials were conducted in laboratory-scale tannery drums to simulate the tannery conditions and to facilitate the future industrial reproduction of this method. Multiresponse optimization was used to optimize the adsorption parameters. Plackett–Burman factorial design was used to initially eliminate some factors from the seven selected important parameters: adsorbent concentration, pH, temperature, dye concentration, rotation speed, time, and particle size. Using this screening procedure, four important factors, which had significant effects on the adsorption, were selected for the next step: adsorbent concentration, pH, dye concentration, and rotation speed. Thereafter, a central composite rotatable design (CCRD) experiment was performed as response surface methodology (RSM) with desirability functions to achieve the optimal conditions, and to determine the maximum adsorption capacity at equilibrium (qe) and dye removal (R). The optimized responses were determined to be R = 87.37% and qe = 24.74 mg·g-1, in the following conditions: pH of 2.3, adsorption concentration of 12.34 g·L-1, dye concentration of 131.25 mg·L-1, and rotation speed of 27.5 rpm.
3

Otimização da operação de adsorção no tratamento de efluentes de tingimento de couro

Gomes, Carolina Scaraffuni January 2014 (has links)
Na etapa de tingimento do couro em curtumes, é necessário fazer a aplicação de corantes para obter uniforme e intensa coloração da superfície e, muitas vezes, para que a textura fibrosa do couro seja tingida em profundidade. Esta etapa do processamento do couro pode resultar em efluentes coloridos. A presença de corantes dificulta o tratamento de efluentes através de métodos convencionais e sua reutilização no processo produtivo, pois causaria o tingimento de uma nova partida com cor indesejada. A adsorção é uma operação de tratamento avançada utilizada para aumentar a qualidade final ou viabilizar o reuso de efluentes. Uma de suas maiores vantagens é a possibilidade de uso de materiais de baixo custo no tratamento de efluentes. Neste estudo, resíduos sólidos de curtumes, farelos de couro curtido ao cromo, foram utilizados como adsorvente para tratar um efluente contendo o corante Vermelho Ácido 357 gerado na operação de acabamento molhado, que foi realizada em um fulão em escala piloto. Todos os experimentos de adsorção foram realizados em fulões em escala laboratorial para simular as condições dos curtumes e para facilitar a futura reprodução deste método no curtume. Para otimizar os parâmetros da adsorção foi feita uma otimização multi-resposta. Inicialmente foi utilizado um planejamento fatorial Plackett–Burman para eliminar alguns fatores dos sete importantes parâmetros selecionados: concentração de adsorvente, pH, temperatura, concentração de corante, velocidade de rotação, tempo e diâmetro de partícula. Com este procedimento de triagem, quatro importantes fatores, que tiveram efeito significativo na adsorção, foram selecionados para o próximo passo: concentração de adsorvente, pH, concentração de corante e velocidade de rotação. Posteriormente, foi utilizada uma metodologia de superfície de resposta (MSR) com delineamento composto central rotacional (DCCR). Com base nesses resultados utilizou-se a função desirability para alcançar as condições ótimas de operação e para determinar a capacidade máxima de adsorção no equilíbrio (qe) e a remoção de corante (R). As respostas otimizadas encontradas foram R = 87,37% e qe = 24,74 mg·g-1, nas condições de pH de 2,3; concentração de adsorvente de 12,34 g·L-1; concentração de corante de 131,25 mg·L-1 e velocidade de rotação de 27,5 rpm. / In the leather dyeing step in tanneries, it is necessary to make the application of dyes to obtain uniform and intense color in the surface and often till the fibrous texture of leather is deeply colored. This stage of leather processing results in colored wastewaters. The presence of dyes complicates the treatment of effluents by conventional methods and their reuse in the production process, as it would cause the dyeing of new batch with unwanted color. Adsorption is an advanced treatment operation that is used to increase the final quality or to enable the reuse of wastewater. One of its biggest advantages is the possibility of using low cost materials in wastewater treatment. In this study, solid waste from tanneries, i.e., chromium-tanned leather shaving waste, was used as the adsorbent to treat effluents containing Acid Red 357 dye generated through a wet end process, carried out in a pilot-scale tannery drum. All the adsorption trials were conducted in laboratory-scale tannery drums to simulate the tannery conditions and to facilitate the future industrial reproduction of this method. Multiresponse optimization was used to optimize the adsorption parameters. Plackett–Burman factorial design was used to initially eliminate some factors from the seven selected important parameters: adsorbent concentration, pH, temperature, dye concentration, rotation speed, time, and particle size. Using this screening procedure, four important factors, which had significant effects on the adsorption, were selected for the next step: adsorbent concentration, pH, dye concentration, and rotation speed. Thereafter, a central composite rotatable design (CCRD) experiment was performed as response surface methodology (RSM) with desirability functions to achieve the optimal conditions, and to determine the maximum adsorption capacity at equilibrium (qe) and dye removal (R). The optimized responses were determined to be R = 87.37% and qe = 24.74 mg·g-1, in the following conditions: pH of 2.3, adsorption concentration of 12.34 g·L-1, dye concentration of 131.25 mg·L-1, and rotation speed of 27.5 rpm.
4

Resíduo sólido de depilação como adsorvente de corantes para tingimento de couro

Mella, Bianca January 2017 (has links)
Nas etapas de processamento do couro, de limpeza da pele, de recortes e ajuste da espessura do couro, diferentes tipos de resíduos sólidos são gerados. Dentre esses resíduos, os pelos provenientes da etapa de depilação são descartados. Além disso, nas etapas finais do acabamento molhado do couro, em especial no tingimento, são adicionados corantes e outros produtos químicos com o objetivo de dar ao couro características superficiais, como cor e textura, gerando, consequentemente, efluentes de difícil tratamento devido ao potencial recalcitrante dos produtos químicos. O objetivo deste trabalho é apresentar uma alternativa ao uso do pelo proveniente da etapa de depilação, possibilitando assim uma extensão no ciclo de vida deste resíduo como um adsorvente alternativo para remoção de corantes empregados na indústria do couro. O pelo (CHW) foi caracterizado através de microscopia eletrônica de varredura (MEV), espectroscopia de raios X dispersiva de energia (EDS), espectroscopia de infravermelho (FTIR), bem como sua área superficial específica e distribuição de tamanho de poro por análises de BET/BJH. A capacidade de remoção dos corantes Azul Ácido 161 (AB-161) e Preto Ácido 210 (AB-210) em soluções aquosas foi estudada emfaixas de pH de 1,0 a 10,0 e também a dosagem ótima de adsorvente. Nas isotermas de adsorção,o modelo de Liu foi o que melhor apresentou resultados para os dois corantes estudados em todas as temperaturas analisadas (30, 40 e 50ºC) No estudo cinético, o modelo de ordem-geral apresentou o melhor ajuste dos dados, com menor tempo de contato para remoção do corante AB-161 de 600 min com o pelo (CHW) e 90 min com o carvão ativado comercial (CAC), nos valores de pH 3,0 e pH 4,0, respectivamente. Para o corante AB-210 o menor tempo de contato para atingir o equilíbrio foi de 120 min e 90 min para CHW e o CAC, nos valores ótimos de pH de 2,0 e 4,0, respectivamente. O carvão produzido (AC-CHW) a partir do pelo residual foi ativado com H3PO4, caracterizado e testado em efluentes reais para remoção dos corantes Laranja Ácido 142 (AO-142) e Marrom Ácido 414 (AB-414). O carvão produzido apresentou um elevado diâmetro de poro (140,70 A), o que favoreceu a adsorção de moléculas maiores e mais complexas, como as presentes nos efluentes reais. Através do MEV e do FTIR observou-se a presença dos compostos estudados no AC-CHW após aadsorção, onde os resultados indicaram que os grupos funcionais de -CH=CH- participaram ativamente do processo de remoção. O pHzero obtido do AC-CHWfoi de 3,65, o que favoreceu a remoção desses compostos já que o efluente real apresenta um pH inferior a 4,0. Os percentuais de remoção obtidos de área sob as curvas de adsorção indicam uma remoção de 51,94% e 49,73% dos efluentes contendo AB-414 e AO-142, respectivamente. / In the stages of leather processing, skin cleansing, trimming and leather thickness adjustment, different types of solid waste are generated. Among these residues, hairs from the depilation stage are discarded. In addition, in the final stages of the wet finishing of leather, in particular in dyeing, dyes and other chemical products are added with the aim of giving the leather surface characteristics, such as color and texture, thus generating effluents that are difficult to treat due to the potential recalcitrant of chemicals. The objective of this work is to present an alternative to the use of hair from the depilation stage, thus allowing an extension in the life cycle of this residue as an alternative adsorbent for the removal of dyes used in the leather industry. The hair (CHW) was characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), infrared spectroscopy (FTIR), as well as its specific surface area and pore size distribution by analysis of BET/BJH. The ability to remove Acid Blue 161 (AB-161) and Acid Black 210 (AB-210) dyes in aqueous solutions was studied in pH ranges from 1 to 10 and also the optimum dosage of adsorbent. In the adsorption isotherms, Liu model presented the best results for the two dyes studied at all temperatures (30, 40 and 50ºC). In the kinetic study, the general-order model presented the best fit of the data, with a lowest contact time to remove the AB-161 dye of 600 min with the hair (CHW) and 90 min with the commercial activated charcoal (CAC) at pH 3.0 and pH 4.0, respectively For the dye AB-210, the lowest contact time to reach equilibrium was 120 min and 90 min for CHW and CAC, at the optimum pH values of 2.0 and 4.0, respectively. The charcoal produced (AC-CHW) from the residual was activated with H3PO4, characterized and tested in actual effluents to remove the Acid Orange 142 (AO-142) and Acid Brown 414 (AB-414) dyes. The carbon produced had a high pore diameter (140,70 A), which favored the adsorption of larger and more complex molecules, such as those present in the actual effluents. The presence of the compounds studied in the AC-CHW after adsorption was observed through the SEM and the FTIR, where the results indicated that the functional groups of -CH = CH- actively participated in the removal process. The obtained pHzero of AC-CHW was 3.65, which favored the removal of these compounds since the actual effluent had a pH lower than 4.0. The percentages of removal obtained from area under the adsorption curves indicate a 51.94% and 49.73% removal of the effluents containing AB-414 and AO-142, respectively.
5

Resíduo sólido de depilação como adsorvente de corantes para tingimento de couro

Mella, Bianca January 2017 (has links)
Nas etapas de processamento do couro, de limpeza da pele, de recortes e ajuste da espessura do couro, diferentes tipos de resíduos sólidos são gerados. Dentre esses resíduos, os pelos provenientes da etapa de depilação são descartados. Além disso, nas etapas finais do acabamento molhado do couro, em especial no tingimento, são adicionados corantes e outros produtos químicos com o objetivo de dar ao couro características superficiais, como cor e textura, gerando, consequentemente, efluentes de difícil tratamento devido ao potencial recalcitrante dos produtos químicos. O objetivo deste trabalho é apresentar uma alternativa ao uso do pelo proveniente da etapa de depilação, possibilitando assim uma extensão no ciclo de vida deste resíduo como um adsorvente alternativo para remoção de corantes empregados na indústria do couro. O pelo (CHW) foi caracterizado através de microscopia eletrônica de varredura (MEV), espectroscopia de raios X dispersiva de energia (EDS), espectroscopia de infravermelho (FTIR), bem como sua área superficial específica e distribuição de tamanho de poro por análises de BET/BJH. A capacidade de remoção dos corantes Azul Ácido 161 (AB-161) e Preto Ácido 210 (AB-210) em soluções aquosas foi estudada emfaixas de pH de 1,0 a 10,0 e também a dosagem ótima de adsorvente. Nas isotermas de adsorção,o modelo de Liu foi o que melhor apresentou resultados para os dois corantes estudados em todas as temperaturas analisadas (30, 40 e 50ºC) No estudo cinético, o modelo de ordem-geral apresentou o melhor ajuste dos dados, com menor tempo de contato para remoção do corante AB-161 de 600 min com o pelo (CHW) e 90 min com o carvão ativado comercial (CAC), nos valores de pH 3,0 e pH 4,0, respectivamente. Para o corante AB-210 o menor tempo de contato para atingir o equilíbrio foi de 120 min e 90 min para CHW e o CAC, nos valores ótimos de pH de 2,0 e 4,0, respectivamente. O carvão produzido (AC-CHW) a partir do pelo residual foi ativado com H3PO4, caracterizado e testado em efluentes reais para remoção dos corantes Laranja Ácido 142 (AO-142) e Marrom Ácido 414 (AB-414). O carvão produzido apresentou um elevado diâmetro de poro (140,70 A), o que favoreceu a adsorção de moléculas maiores e mais complexas, como as presentes nos efluentes reais. Através do MEV e do FTIR observou-se a presença dos compostos estudados no AC-CHW após aadsorção, onde os resultados indicaram que os grupos funcionais de -CH=CH- participaram ativamente do processo de remoção. O pHzero obtido do AC-CHWfoi de 3,65, o que favoreceu a remoção desses compostos já que o efluente real apresenta um pH inferior a 4,0. Os percentuais de remoção obtidos de área sob as curvas de adsorção indicam uma remoção de 51,94% e 49,73% dos efluentes contendo AB-414 e AO-142, respectivamente. / In the stages of leather processing, skin cleansing, trimming and leather thickness adjustment, different types of solid waste are generated. Among these residues, hairs from the depilation stage are discarded. In addition, in the final stages of the wet finishing of leather, in particular in dyeing, dyes and other chemical products are added with the aim of giving the leather surface characteristics, such as color and texture, thus generating effluents that are difficult to treat due to the potential recalcitrant of chemicals. The objective of this work is to present an alternative to the use of hair from the depilation stage, thus allowing an extension in the life cycle of this residue as an alternative adsorbent for the removal of dyes used in the leather industry. The hair (CHW) was characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), infrared spectroscopy (FTIR), as well as its specific surface area and pore size distribution by analysis of BET/BJH. The ability to remove Acid Blue 161 (AB-161) and Acid Black 210 (AB-210) dyes in aqueous solutions was studied in pH ranges from 1 to 10 and also the optimum dosage of adsorbent. In the adsorption isotherms, Liu model presented the best results for the two dyes studied at all temperatures (30, 40 and 50ºC). In the kinetic study, the general-order model presented the best fit of the data, with a lowest contact time to remove the AB-161 dye of 600 min with the hair (CHW) and 90 min with the commercial activated charcoal (CAC) at pH 3.0 and pH 4.0, respectively For the dye AB-210, the lowest contact time to reach equilibrium was 120 min and 90 min for CHW and CAC, at the optimum pH values of 2.0 and 4.0, respectively. The charcoal produced (AC-CHW) from the residual was activated with H3PO4, characterized and tested in actual effluents to remove the Acid Orange 142 (AO-142) and Acid Brown 414 (AB-414) dyes. The carbon produced had a high pore diameter (140,70 A), which favored the adsorption of larger and more complex molecules, such as those present in the actual effluents. The presence of the compounds studied in the AC-CHW after adsorption was observed through the SEM and the FTIR, where the results indicated that the functional groups of -CH = CH- actively participated in the removal process. The obtained pHzero of AC-CHW was 3.65, which favored the removal of these compounds since the actual effluent had a pH lower than 4.0. The percentages of removal obtained from area under the adsorption curves indicate a 51.94% and 49.73% removal of the effluents containing AB-414 and AO-142, respectively.
6

Resíduo sólido de depilação como adsorvente de corantes para tingimento de couro

Mella, Bianca January 2017 (has links)
Nas etapas de processamento do couro, de limpeza da pele, de recortes e ajuste da espessura do couro, diferentes tipos de resíduos sólidos são gerados. Dentre esses resíduos, os pelos provenientes da etapa de depilação são descartados. Além disso, nas etapas finais do acabamento molhado do couro, em especial no tingimento, são adicionados corantes e outros produtos químicos com o objetivo de dar ao couro características superficiais, como cor e textura, gerando, consequentemente, efluentes de difícil tratamento devido ao potencial recalcitrante dos produtos químicos. O objetivo deste trabalho é apresentar uma alternativa ao uso do pelo proveniente da etapa de depilação, possibilitando assim uma extensão no ciclo de vida deste resíduo como um adsorvente alternativo para remoção de corantes empregados na indústria do couro. O pelo (CHW) foi caracterizado através de microscopia eletrônica de varredura (MEV), espectroscopia de raios X dispersiva de energia (EDS), espectroscopia de infravermelho (FTIR), bem como sua área superficial específica e distribuição de tamanho de poro por análises de BET/BJH. A capacidade de remoção dos corantes Azul Ácido 161 (AB-161) e Preto Ácido 210 (AB-210) em soluções aquosas foi estudada emfaixas de pH de 1,0 a 10,0 e também a dosagem ótima de adsorvente. Nas isotermas de adsorção,o modelo de Liu foi o que melhor apresentou resultados para os dois corantes estudados em todas as temperaturas analisadas (30, 40 e 50ºC) No estudo cinético, o modelo de ordem-geral apresentou o melhor ajuste dos dados, com menor tempo de contato para remoção do corante AB-161 de 600 min com o pelo (CHW) e 90 min com o carvão ativado comercial (CAC), nos valores de pH 3,0 e pH 4,0, respectivamente. Para o corante AB-210 o menor tempo de contato para atingir o equilíbrio foi de 120 min e 90 min para CHW e o CAC, nos valores ótimos de pH de 2,0 e 4,0, respectivamente. O carvão produzido (AC-CHW) a partir do pelo residual foi ativado com H3PO4, caracterizado e testado em efluentes reais para remoção dos corantes Laranja Ácido 142 (AO-142) e Marrom Ácido 414 (AB-414). O carvão produzido apresentou um elevado diâmetro de poro (140,70 A), o que favoreceu a adsorção de moléculas maiores e mais complexas, como as presentes nos efluentes reais. Através do MEV e do FTIR observou-se a presença dos compostos estudados no AC-CHW após aadsorção, onde os resultados indicaram que os grupos funcionais de -CH=CH- participaram ativamente do processo de remoção. O pHzero obtido do AC-CHWfoi de 3,65, o que favoreceu a remoção desses compostos já que o efluente real apresenta um pH inferior a 4,0. Os percentuais de remoção obtidos de área sob as curvas de adsorção indicam uma remoção de 51,94% e 49,73% dos efluentes contendo AB-414 e AO-142, respectivamente. / In the stages of leather processing, skin cleansing, trimming and leather thickness adjustment, different types of solid waste are generated. Among these residues, hairs from the depilation stage are discarded. In addition, in the final stages of the wet finishing of leather, in particular in dyeing, dyes and other chemical products are added with the aim of giving the leather surface characteristics, such as color and texture, thus generating effluents that are difficult to treat due to the potential recalcitrant of chemicals. The objective of this work is to present an alternative to the use of hair from the depilation stage, thus allowing an extension in the life cycle of this residue as an alternative adsorbent for the removal of dyes used in the leather industry. The hair (CHW) was characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), infrared spectroscopy (FTIR), as well as its specific surface area and pore size distribution by analysis of BET/BJH. The ability to remove Acid Blue 161 (AB-161) and Acid Black 210 (AB-210) dyes in aqueous solutions was studied in pH ranges from 1 to 10 and also the optimum dosage of adsorbent. In the adsorption isotherms, Liu model presented the best results for the two dyes studied at all temperatures (30, 40 and 50ºC). In the kinetic study, the general-order model presented the best fit of the data, with a lowest contact time to remove the AB-161 dye of 600 min with the hair (CHW) and 90 min with the commercial activated charcoal (CAC) at pH 3.0 and pH 4.0, respectively For the dye AB-210, the lowest contact time to reach equilibrium was 120 min and 90 min for CHW and CAC, at the optimum pH values of 2.0 and 4.0, respectively. The charcoal produced (AC-CHW) from the residual was activated with H3PO4, characterized and tested in actual effluents to remove the Acid Orange 142 (AO-142) and Acid Brown 414 (AB-414) dyes. The carbon produced had a high pore diameter (140,70 A), which favored the adsorption of larger and more complex molecules, such as those present in the actual effluents. The presence of the compounds studied in the AC-CHW after adsorption was observed through the SEM and the FTIR, where the results indicated that the functional groups of -CH = CH- actively participated in the removal process. The obtained pHzero of AC-CHW was 3.65, which favored the removal of these compounds since the actual effluent had a pH lower than 4.0. The percentages of removal obtained from area under the adsorption curves indicate a 51.94% and 49.73% removal of the effluents containing AB-414 and AO-142, respectively.

Page generated in 1.5731 seconds