• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Towards a test generation approach for compositional real-time systems.

DAMASCENO, Adriana Carla. 25 January 2018 (has links)
Submitted by Dilene Paulo (dilene.fatima@ufcg.edu.br) on 2018-01-25T12:53:52Z No. of bitstreams: 1 ADRIANA CARLA DAMASCENO – TESE PPGCC 2015.pdf: 3272500 bytes, checksum: 779024871de692299535f2de0eeabfb9 (MD5) / Made available in DSpace on 2018-01-25T12:53:52Z (GMT). No. of bitstreams: 1 ADRIANA CARLA DAMASCENO – TESE PPGCC 2015.pdf: 3272500 bytes, checksum: 779024871de692299535f2de0eeabfb9 (MD5) Previous issue date: 2015-03-06 / We can find many examples of Real-time Systems (RTS) in critical applications such as patient monitoring, air traffic control and others. A failure in this kind of system can be catastrophic. For example, it can harm human lives or increase project budgets. Hence, the testing of real-time systems must be accurate. Models are used to perform this task, since they contain information about how the system behaves and when actions may happen. Due to the complexity of the available systems, most RTS are composed of subsystems that interact as part of a bigger system. These subsystems are combined through operators to model their specification behavior. However, works on the testing of compositional models for RTS are practically nonexistent. Among the available approaches to perform testing for non-compositional RTS models, the tioco conformance testing theory focuses on generating test cases based on implementation and specification models. Moreover, a conformance relation defines whether success in testing means conformance between an implementation and a specification. To express specifications and to represent implementations under test, we use Timed Input Output Symbolic Transitions Systems (TIOSTS). These models store symbolic data and clock variables, avoiding the state space and region explosion problems. Regarding the testing of compositional models, some questions may arise: If two subsystem implementations are tioco conformant to their specifications, is it correct to assume that the composition of the implementations is also tioco conformant to the composition of their specifications? In this case, how can operators be defined to work with TIOSTS and tioco? To answer these questions, this thesis proposes the sequential, interruption and parallel operators for the TIOSTS model. For each operator, we study how the tioco conformance relation behaves with respect to subsystems and the composed system. We present results towards properties of compositional operators when the subsystems are composed, as well as implementing them. Besides, we show three examples where each operator can be used and illustrate the applicability of our approach in two exploratory studies. The first models components of a aircraft specification and the second presents application level interruptions in an Android system. / We can nd many examples of Real-time Systems (RTS) in critical applications such as patient monitoring, air tra c control and others. A failure in this kind of system can be catastrophic. For example, it can harm human lives or increase project budgets. Hence, the testing of real-time systems must be accurate. Models are used to perform this task, since they contain information about how the system behaves and when actions may happen. Due to the complexity of the available systems, most RTS are composed of subsystems that interact as part of a bigger system. These subsystems are combined through operators to model their speci cation behavior. However, works on the testing of compositional models for RTS are practically nonexistent. Among the available approaches to perform testing for non-compositional RTS models, the tioco conformance testing theory focuses on generating test cases based on implementation and speci cation models. Moreover, a conformance relation de nes whether success in testing means conformance between an implementation and a speci cation. To express speci cations and to represent implementations under test, we use Timed Input Output Symbolic Transitions Systems (TIOSTS). These models store symbolic data and clock variables, avoiding the state space and region explosion problems. Regarding the testing of compositional models, some questions may arise: If two subsystem implementations are tioco conformant to their speci cations, is it correct to assume that the composition of the implementations is also tioco conformant to the composition of their speci cations? In this case, how can operators be de ned to work with TIOSTS and tioco? To answer these questions, this thesis proposes the sequential, interruption and parallel operators for the TIOSTS model. For each operator, we study how the tioco conformance relation behaves with respect to subsystems and the composed system. We present results towards properties of compositional operators when the subsystems are composed, as well as implementing them. Besides, we show three examples where each operator can be used and illustrate the applicability of our approach in two exploratory studies. The rst models components of a aircraft speci cation and the second presents application level interruptions in an Android system.

Page generated in 0.0375 seconds