• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2140
  • 1243
  • 249
  • 228
  • 105
  • 105
  • 94
  • 89
  • 23
  • 23
  • 13
  • 13
  • 12
  • 11
  • 9
  • Tagged with
  • 5413
  • 1703
  • 791
  • 595
  • 572
  • 539
  • 491
  • 464
  • 414
  • 409
  • 329
  • 296
  • 293
  • 278
  • 272
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Neurogenin 3(+) cells contribute to beta-cell neogenesis and proliferation in injured adult mouse pancreas

Van de Casteele, M., Leuckx, G., Baeyens, L., Cai, Y., Yuchi, Y., Coppens, V., De Groef, S., Eriksson, M., Svensson, C., Ahlgren, Ulf, Ahnfelt-Ronne, J., Madsen, O. D., Waisman, A., Dor, Y., Jensen, J. N., Heimberg, H. January 2013 (has links)
We previously showed that injury by partial duct ligation (PDL) in adult mouse pancreas activates Neurogenin 3 (Ngn3)(+) progenitor cells that can differentiate to beta cells ex vivo. Here we evaluate the role of Ngn3(+) cells in beta cell expansion in situ. PDL not only induced doubling of the beta cell volume but also increased the total number of islets. beta cells proliferated without extended delay (the so-called 'refractory' period), their proliferation potential was highest in small islets, and 86% of the beta cell expansion was attributable to proliferation of pre-existing beta cells. At sufficiently high Ngn3 expression level, upto 14% of all beta cells and 40% of small islet beta cells derived from non-beta cells. Moreover, beta cell proliferation was blunted by a selective ablation of Ngn3(+) cells but not by conditional knockout of Ngn3 in pre-existing beta cells supporting a key role for Ngn3(+) insulin(-) cells in beta cell proliferation and expansion. We conclude that Ngn3(+) cell-dependent proliferation of pre-existing and newly-formed beta cells as well as reprogramming of non-beta cells contribute to in vivo beta cell expansion in the injured pancreas of adult mice.
322

Integration of Tissue-engineered Cartilage – An In Vitro Model

Theodoropoulos, John 27 November 2012 (has links)
The ability of articular cartilage to self-repair after injury is limited due to the nature of the tissue. Biological repair is a promising treatment for cartilage injuries but success is limited by the ability to integrate with native cartilage. An in vitro model can be developed to investigate factors that regulate cartilage repair. A tissue engineered cartilage construct was placed into a host bovine osteochondral explant and cultured for 4 and 8 weeks. This same construct was cultured under stimulated and unstimulated conditions for 2 and 4 weeks. Autologous osteochondral implants served as controls. Integration was evaluated histologically, biochemically, biomechanically and for changes in gene expression. The tissue-engineered implants integrated over time whereas the autologous implants did not. Mechanical stimulation and prolonged incubation improved integration between implant and host tissue. An in vitro model of repair-native cartilage integration has been developed which is suitable for further study of tissue integration.
323

Integration of Tissue-engineered Cartilage – An In Vitro Model

Theodoropoulos, John 27 November 2012 (has links)
The ability of articular cartilage to self-repair after injury is limited due to the nature of the tissue. Biological repair is a promising treatment for cartilage injuries but success is limited by the ability to integrate with native cartilage. An in vitro model can be developed to investigate factors that regulate cartilage repair. A tissue engineered cartilage construct was placed into a host bovine osteochondral explant and cultured for 4 and 8 weeks. This same construct was cultured under stimulated and unstimulated conditions for 2 and 4 weeks. Autologous osteochondral implants served as controls. Integration was evaluated histologically, biochemically, biomechanically and for changes in gene expression. The tissue-engineered implants integrated over time whereas the autologous implants did not. Mechanical stimulation and prolonged incubation improved integration between implant and host tissue. An in vitro model of repair-native cartilage integration has been developed which is suitable for further study of tissue integration.
324

Fabrication of a 3-dimensional Cardiac Tissue using a Modular Tissue Engineering Approach

Leung, Brendan Martin Pue-Bun 14 November 2011 (has links)
Implantation of engineered cardiac tissue may restore lost cardiac function to damaged myocardium. We propose that functional cardiac tissue can be fabricated using a modular, vascularized tissue engineering approach developed in our laboratory. In this study, rat aortic endothelial cells (RAEC) were coated onto sub-millimetre size modules embedded with cardiomyocyte-enriched neonatal rat heart cells (CM) and assembled into a contractile, macroporous sheet-like construct. Cell morphologies, contractility and responsiveness to electrical stimulus were examined to evaluate the function of the resulting modular construct. CM embedded modules contracted spontaneously at day 7 post-fabrication and remained viable in vitro at day 14. Modules cultured in 10% bovine serum were more contractile and responsive to external stimulus compared to 10% FBS medium cultured modules. VE-cadherin staining showed a confluent layer of RAEC on CM embedded co-culture modules at day 7. Co-culture modules were also contractilie, but when compared to CM only modules their electrical responsiveness was slightly diminished. Modules assembled into macroporous sheets retained their characteristics at day 10 post-assembly. Micrographs from histological sections revealed the existence of muscle bundles near the perimeter of modules and at inter-module junctions. The fate of modular cardiac tissues in vivo was examined using two implantation strategies based on a syngeneic animal model. Co-culture modules (CM and EC) were either injected into the peri-infarct zone of the heart, or fabricated into a patch form and implanted over a right ventricular free wall defect. In both models, donor EC were involved in the formation of blood vessels-like structures, which appeared to have connected with the host vasculature. Co-culture implants had a higher overall vessel density compared to CM-only implants, but only in the absence of MatrigelTM. Moreover, donor CM organized into striated muscle-like structures, at least when MatrigelTM was removed from the matrix. Together these results suggest that modular cardiac tissue can survive and develop into native-like structures when implanted in vivo and the potential of the modular approach as a platform for building 3-D vascularised cardiac tissue should be explored in greater depth.
325

Modeling of the dispensing-based tissue scaffold fabrication processes

Li, Minggan 11 August 2010
Tissue engineering is an emerging area with an aim to create artificial tissues or organs by employing methods of biology, engineering and material science. In tissue engineering, scaffolds are three-dimensional (3D) structure made from biomaterials with highly interconnected pore networks or microstructure, and are used to provide the mechanical and biological cues to guide cell differentiation in order to form desired three-dimensional tissues or functional organs. Hence, tissue scaffold plays a critical role in tissue engineering. However, fabrication of such scaffolds has proven to be a challenge task. One important barrier is the inability to fabricate scaffolds with designed pore size and porosity to mimic the microstructure of native tissue. Another issue is the prediction of process-induced cell damage in the cell-involved scaffold fabrication processes. By addressing these key issues involved in the scaffold fabrication, this research work is aimed at developing methods and models to represent the dispensing-based solid free form scaffold fabrication process with and without the presence of living cells.<p> The microstructure of scaffolds, featured by the pore size and porosity, has shown to significantly affect the biological and mechanical properties of formed tissues. As such, during fabrication process the ability to predict and determine scaffold pore size and porosity is of great importance. In the first part of this research, the flow behaviours of the scaffold materials were investigated and a model of the flow rate of material dispensed during the scaffold fabrication was developed. On this basis, the pore size and porosity of the scaffolds fabricated were represented by developing a mathematical model. Scaffold fabrication experiments using colloidal gels with different hydroxylapatite volume fractions were carried out and the results obtained agreed with those from model simulations, indicating the effectiveness of the models developed. The availability of these models makes it possible to control the scaffold fabrication process rigorously, instead of relying upon a trial and error process as previously reported.<p> In the scaffold fabrication process with the presence of living cells, cells are continuously subjected to mechanical forces. If the forces exceed certain level and/or the forces are applied beyond certain time periods, cell damage may result. In the second part of this research, a method to quantify the cell damage in the bio-dispensing process is developed. This method consists of two steps: one step is to establish cell damage models or laws to relate cell damage to the hydrostatic pressure / shear stress that is applied on cells; and the second step is to represent the process-induced forces that cells experience during the bio-dispensing process and then apply the established cell damage law to model the percent cell damage in the process. Based on the developed method, the cell damage percents in the scaffold fabrication processes that employ two types of dispensing needles, i.e., tapered and cylindrical needles, respectively, were investigated and compared. Also, the difference in cell damage under the high and low shear stress conditions was investigated, and a method was developed to establish the cell damage law directly from the bio-dispensing process. To validate the aforementioned methods and models, experiments of fabricating scaffolds incorporating Schwann cells or 3T3 fibroblasts were carried out and the percent cell damage were measured and compared with the simulation results. The validated models allow one to determine of the influence of process parameters, such as the air pressure applied to the process and the needle geometry, on cell damage and then optimize these values to preserve cell viability and/or achieve the desired cell distribution within the scaffolds.
326

Fabrication of a 3-dimensional Cardiac Tissue using a Modular Tissue Engineering Approach

Leung, Brendan Martin Pue-Bun 14 November 2011 (has links)
Implantation of engineered cardiac tissue may restore lost cardiac function to damaged myocardium. We propose that functional cardiac tissue can be fabricated using a modular, vascularized tissue engineering approach developed in our laboratory. In this study, rat aortic endothelial cells (RAEC) were coated onto sub-millimetre size modules embedded with cardiomyocyte-enriched neonatal rat heart cells (CM) and assembled into a contractile, macroporous sheet-like construct. Cell morphologies, contractility and responsiveness to electrical stimulus were examined to evaluate the function of the resulting modular construct. CM embedded modules contracted spontaneously at day 7 post-fabrication and remained viable in vitro at day 14. Modules cultured in 10% bovine serum were more contractile and responsive to external stimulus compared to 10% FBS medium cultured modules. VE-cadherin staining showed a confluent layer of RAEC on CM embedded co-culture modules at day 7. Co-culture modules were also contractilie, but when compared to CM only modules their electrical responsiveness was slightly diminished. Modules assembled into macroporous sheets retained their characteristics at day 10 post-assembly. Micrographs from histological sections revealed the existence of muscle bundles near the perimeter of modules and at inter-module junctions. The fate of modular cardiac tissues in vivo was examined using two implantation strategies based on a syngeneic animal model. Co-culture modules (CM and EC) were either injected into the peri-infarct zone of the heart, or fabricated into a patch form and implanted over a right ventricular free wall defect. In both models, donor EC were involved in the formation of blood vessels-like structures, which appeared to have connected with the host vasculature. Co-culture implants had a higher overall vessel density compared to CM-only implants, but only in the absence of MatrigelTM. Moreover, donor CM organized into striated muscle-like structures, at least when MatrigelTM was removed from the matrix. Together these results suggest that modular cardiac tissue can survive and develop into native-like structures when implanted in vivo and the potential of the modular approach as a platform for building 3-D vascularised cardiac tissue should be explored in greater depth.
327

Engineering Decellularized Matrices to Support Adherent Cell Therapy

Crawford, Bredon January 2011 (has links)
Whole-organ perfusion decellularization was performed with rat hearts on a modified chromatography apparatus. Analysis of the flow properties and effluent material over time provided insights into the decellularization process, and allowed non-destructive testing of perfused cardiac tissue. Decellularized matrices were stored for up to 1 year at -80°C and then conditioned to remove residual detergent and cryoprotectant. Tissue was reseeded with canine blood outgrowth endothelial cells (BOECs) and cultured in an autoclavable closed-circuit bubble-free reactor. The entire process was considered in the context of eventual scale-up in equipment design, the use of disposable components, and extracellular matrix (ECM) product storage. Tissue patch substrates for cell growth were studied for cytotoxic effects towards process development. Decellularization protocols were compared. Extracellular matrix derived coatings and gels were investigated as process assays and potential cell delivery vehicles. Peracetic acid and UV disinfection were tested. Micronized ECM carriers were developed for scalable culture, with considerations to carrier morphology, cell attachment, and egress. Micronized ECM carriers were tested with a novel in vitro assay to simulate the support of adherent cells for gene-modified cell therapy.
328

Modeling of the dispensing-based tissue scaffold fabrication processes

Li, Minggan 11 August 2010 (has links)
Tissue engineering is an emerging area with an aim to create artificial tissues or organs by employing methods of biology, engineering and material science. In tissue engineering, scaffolds are three-dimensional (3D) structure made from biomaterials with highly interconnected pore networks or microstructure, and are used to provide the mechanical and biological cues to guide cell differentiation in order to form desired three-dimensional tissues or functional organs. Hence, tissue scaffold plays a critical role in tissue engineering. However, fabrication of such scaffolds has proven to be a challenge task. One important barrier is the inability to fabricate scaffolds with designed pore size and porosity to mimic the microstructure of native tissue. Another issue is the prediction of process-induced cell damage in the cell-involved scaffold fabrication processes. By addressing these key issues involved in the scaffold fabrication, this research work is aimed at developing methods and models to represent the dispensing-based solid free form scaffold fabrication process with and without the presence of living cells.<p> The microstructure of scaffolds, featured by the pore size and porosity, has shown to significantly affect the biological and mechanical properties of formed tissues. As such, during fabrication process the ability to predict and determine scaffold pore size and porosity is of great importance. In the first part of this research, the flow behaviours of the scaffold materials were investigated and a model of the flow rate of material dispensed during the scaffold fabrication was developed. On this basis, the pore size and porosity of the scaffolds fabricated were represented by developing a mathematical model. Scaffold fabrication experiments using colloidal gels with different hydroxylapatite volume fractions were carried out and the results obtained agreed with those from model simulations, indicating the effectiveness of the models developed. The availability of these models makes it possible to control the scaffold fabrication process rigorously, instead of relying upon a trial and error process as previously reported.<p> In the scaffold fabrication process with the presence of living cells, cells are continuously subjected to mechanical forces. If the forces exceed certain level and/or the forces are applied beyond certain time periods, cell damage may result. In the second part of this research, a method to quantify the cell damage in the bio-dispensing process is developed. This method consists of two steps: one step is to establish cell damage models or laws to relate cell damage to the hydrostatic pressure / shear stress that is applied on cells; and the second step is to represent the process-induced forces that cells experience during the bio-dispensing process and then apply the established cell damage law to model the percent cell damage in the process. Based on the developed method, the cell damage percents in the scaffold fabrication processes that employ two types of dispensing needles, i.e., tapered and cylindrical needles, respectively, were investigated and compared. Also, the difference in cell damage under the high and low shear stress conditions was investigated, and a method was developed to establish the cell damage law directly from the bio-dispensing process. To validate the aforementioned methods and models, experiments of fabricating scaffolds incorporating Schwann cells or 3T3 fibroblasts were carried out and the percent cell damage were measured and compared with the simulation results. The validated models allow one to determine of the influence of process parameters, such as the air pressure applied to the process and the needle geometry, on cell damage and then optimize these values to preserve cell viability and/or achieve the desired cell distribution within the scaffolds.
329

Tissue-Engineering Bone from Omentum

Kamei, Yuzuru, Toriyama, Kazuhiro, Takada, Toru, Yagi, Shunjiro 08 1900 (has links)
No description available.
330

The Activation of Erks in Intestine and Lung of Thermal Injured-rats

Chen, Chia-Jung 28 July 2003 (has links)
Burn-induced intestinal barrier failure has been proposed to be a potential cause of subsequent multiple organ failure after burn. Studies have shown that the increased iNOS activity is closely related to intestinal and pulmonary damage in rats after burn. Expression of iNOS and MMP-9 is regulated by nuclear factor NF-£eB activation, which is frequently a result of MAPKs pathway activation. This study was to investigate the role of ERKs in intestinal and pulmonary damage induced by burn in rats. In experiments, SD rats underwent 30 ~ 35 % TBSA burn. At various times after burn, intestinal mucosa and pulmonary proteins were assayed for ERKs and p38 phosphorylation by immunoblotting, nuclear extracts were assayed for NF-£eB activation by EMSA, intestinal and pulmonary iNOS, MMP-9 expressions were evaluated by RT-PCR, the FITC-dextran permeability was determined to assess the intestinal barrier function and the pulmonary microvascular dysfunction was quantitated by measuring the extravasation of Evans blue dye. The results show that burn induced ERKs and p38 phosphorylation, the expression of iNOS, and NF-£eB activation in intestinal mucosa and lung, but the expression of MMP-9 was attenuated. Treatment with MEK1/2 inhibitors, PD98059 (10 mg/kg i.p.) or U0126 (5 mg/kg i.p.) immediately after burn, attenuated the phosphorylation of intestinal mucosa and pulmonary ERKs, the activation of NF-£eB, the increase in intestinal permeability, and pulmonary microvascular dysfunction. Interestingly, the expression of iNOS in intestinal mucosa and pulmonary tissues was induced by PD98059 administration, but the expression of MMP-9 in intestinal mucosa was attenuated by PD98059 administration. These results suggest that the tissue damage is regulated by NF-£eB activation and the activation of NF-£eB is primarily mediated by signal pathway of ERKs in burn-injured rats, so the signal transduction pathway may involve ERKs and p38, NF-£eB, iNOS or MMP-9, then causes tissue damage. Further, burn-induced intestinal mucosa and pulmonary ERKs have different degree of activation. The p38 and ERKs phosphorylation showed a two-step activation in intestinal mucosa and pulmonary tissues after burn. Inhibition of intestinal and pulmonary ERKs in vivo afforded significant protection against burn-induced barrier failure. However, the data showed that iNOS may not play a major role in the burn-induced intestinal and pulmonary damage, and MMP-9 may have more affect on tissues damage.

Page generated in 0.0423 seconds