• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 679
  • 123
  • 72
  • 67
  • 67
  • 56
  • 46
  • 8
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 1493
  • 1493
  • 325
  • 323
  • 277
  • 238
  • 218
  • 161
  • 134
  • 128
  • 127
  • 115
  • 115
  • 112
  • 108
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Electrospinning of ultrafine fibers and its application in forming fibrous tissue engineering scaffolds

Tong, Ho-wang. January 2009 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2009. / Includes bibliographical references (p. 313-357). Also available in print.
32

Development of porous scaffolds for bone tissue engineering /

Ramay, Hassna Rehman. January 2004 (has links)
Thesis (Ph. D.)--University of Washington, 2004. / Vita. Includes bibliographical references (leaves 194-217).
33

Development of dendritic and polymeric scaffolds for biological and catalysis applications

Goyal, Poorva. January 2008 (has links)
Thesis (Ph.D.)--Chemistry and Biochemistry, Georgia Institute of Technology, 2008. / Committee Chair: Weck, Marcus; Committee Member: Bunz, Uwe H. F.; Committee Member: Dickson, Robert M; Committee Member: Fahrni, Christoph J; Committee Member: Jones, Christopher W; Committee Member: Murthy, Niren.
34

Tissue engineering a pancreatic substitute based on recombinant intestinal endocrine cells

Bara, Heather Lynn. January 2008 (has links)
Thesis (Ph.D)--Biomedical Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Sambanis, Athanassios; Committee Member: Bellamkonda, Ravi; Committee Member: Garcia, Andres; Committee Member: Le Doux, Joseph; Committee Member: Thule, Peter. Part of the SMARTech Electronic Thesis and Dissertation Collection.
35

Fabrication of tissue engineering scaffolds using stereolithography

Comeau, Benita M.. January 2007 (has links)
Thesis (Ph.D)--Chemical Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Henderson, Clilfford; Committee Member: Ludovice, Peter; Committee Member: Meredith, Carson; Committee Member: Prausnitz, Mark; Committee Member: Rosen, David; Committee Member: Wang, Yadong. Part of the SMARTech Electronic Thesis and Dissertation Collection.
36

Development of an anisotropic swelling hydrogel for tissue expansion control over the degree, rate and direction of hydrogel swelling /

Lee, Jinhyun. January 2008 (has links)
Thesis (Ph.D)--Polymer, Textile and Fiber Engineering, Georgia Institute of Technology, 2009. / Committee Chair: David G. Bucknall; Committee Member: Haskell W. Beckham; Committee Member: L. Andrew Lyon; Committee Member: Yadong Wang; Committee Member: Yonathan Thio. Part of the SMARTech Electronic Thesis and Dissertation Collection.
37

Reconstructing the in vivo environment for the development of tissue-engineered constructs from human mesenchymal stem cells

Grayson, Warren L. Ma, Teng. January 1900 (has links)
Thesis (Ph. D.)--Florida State University, 2005. / Advisor: Teng Ma, Florida State University, College of Engineering, Dept. of Chemical and Biomedical Engineering. Title and description from dissertation home page (viewed Feb. 13, 2006). Document formatted into pages; contains xiv, 164 pages. Includes bibliographical references.
38

Microfabrication of spatially-patterned, polymer scaffolds for applications in stem cell and tissue engineering

Call, Mary Gazell Mapili, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
39

Tissue Engineering von Fettgewebe: Immunohistochemische und histologische Analyse der Entwicklung der Extrazellulärmatrix und der Adipogenese in 3D Gewebekonstrukten in vivo / Tissue engineering of adipose tissue: Immunohistochemical and histological analysis of the development of the extracellular matrix and adipogenesis in 3D tissue constructs in vivo

Stebani, Tanja Veronika January 2020 (has links) (PDF)
Die Erzeugung von klinisch in der plastischen und rekonstruktiven Chirurgie nutzbarem Fettgewebe stellt einen sehr wichtigen Aspekt in aktuellen Arbeiten des Tissue Engineerings, also der Erzeugung von spezifischem Gewebe aus Spenderzellen dar. Sollte es gelingen, aus patienteneigenen Zellen wieder neues Gewebe zu züchten, so würden daraus eine Fülle neuer Behandlungsmöglichkeiten für Gewebedefekte resultieren. In einer Vorgängerarbeit zu der vorliegenden Arbeit konnte gezeigt werden, dass die Adipogenese in vivo von Fettgewebe aus Vorläuferzellen, den Präadipozyten, durch geeignete Methoden der Vorkultivierung in vitro beeinflusst werden kann. Die Unterschiede in der Vorbehandlung lagen in einer Induktion der Differenzierung der Präadipozyten bei gleichzeitigem Stopp der Proliferation und einer anschließenden verschieden langen Ausdifferenzierungsphase der Zellen in vitro im Brutschrank. Die resultierenden Konstrukte wurden in jeweils drei Mäuse in vier Gruppen implantiert und nach 1, 5, 12 und 24 Wochen entnommen und untersucht. Während die Präadipozyten von Gruppe 1 keine Induktion erfuhren, erfolgte diese bei den anderen drei Gruppen. Die Konstrukte der Gruppe 2 wurden dann bereits nach 2 Tagen der Induktion der Präadipozyten implantiert, die Konstrukte der Gruppe 3 blieben zur Differenzierung noch 7 Tage, die der Gruppe 4 noch 33 Tage im Brutschrank, bevor sie in die Versuchstiere eingebracht wurden. Ziel der vorliegenden Arbeit war es zunächst, an den Gewebekonstrukten der Vorgängerarbeit eine histomorphometrische Analyse der resultierenden Adipozyten in vivo über die Zeit durchzuführen, um eine detaillierte Beurteilung des Verlaufs der Fettgewebeentwicklung anhand resultierender Zellzahlen darzustellen. Hierfür wurden die Gewebedünnschnitte der Mäuse nach einer HE-Anfärbung mikroskopisch untersucht und die Zellzahlen resultierend jeweils aus unreifen und reifen Adipozyten histomorphometrisch quantifiziert. Die Unterscheidung erfolgte mittels einer Größenzuordnung, wobei Zellen kleiner 20 µm Durchmesser den unreifen und Zellen größer 20 µm Durchmesser den reifen Adipozyten zugeordnet wurden. Aus der quantitativen Analyse mittels Histomorphometrie ergab sich, dass in allen Konstrukten die Zahlen an Zellen der den unreifen Adipozyten zugeordneten Größenordnung von kleiner als 20µm tendenziell während der gesamten Zeit in vivo klein bleibt. Die Zellzahlen resultierend aus großen Zellen mit einem Durchmesser mehr als 20µm, die den reifen Adipozyten zugeordnet wurden, steigen dagegen in allen Proben leicht an, wobei die Konstrukte der Gruppe 4 den absolut höchsten Wert aufwiesen. In der HE-Anfärbung ist demgemäß in Gruppe 4 eine Vielzahl reifer Adipozyten zu erkennen. Das zweite Ziel dieser Arbeit war es, durch Anfärbung charakteristischer Proteine der extrazellulären Matrix mittels markierter Antikörper und einer anschließenden immunohistochemischen Analyse des Verlaufs der Signalintensität dieser markierten Komponenten in der EZM die Adipogenese mittels Analyse der entstehenden Gerüstproteine zu verfolgen. Hierfür wurde durch eine umfangreiche immunohistochemische Analyse die Bildung der Kollagene I, IV und VI sowie von Laminin als Bestandteile der EZM analysiert und damit die Art und der Umfang der entstandenen extrazellulären Matrix während der Adipogenese qualitativ beurteilt. Die Fluoreszenz-Bilder der Proben nach den jeweiligen Gruppen und Wochen in vivo zeigen einen deutlichen Hinweis im Sinne der Bildung von Fettgewebe in den Gewebe-Konstrukten der Gruppe 4. Während in den Gruppen 1 und 2 fast durchweg faserartige Bindegewebsstrukturen, verbunden mit den entsprechenden eher fibrillärem Aussehen der Signale für die untersuchten Kollagene I, IV, VI und für Laminin gefunden werden konnten, zeigen die Konstrukte der Gruppe 3 und insbesondere von Gruppe 4 in den Fluoreszenz-Abbildungen deutlich ausgeprägtere, netzartig ausgebildete Strukturen. Aus den Resultaten der vorliegenden Arbeit kann demnach geschlossen werden, dass die Art der Vorkultivierung eine spätere Adipogenese eindeutig beeinflussen kann. Eine längere Inkubationszeit nach erfolgter Induktion der Präadipozyten zur Förderung der Reifung zu Adipozyten vor der Implantation fördert die Bildung einer höheren Anzahl von Adipozyten und die Ausbildung einer charakteristischen EZM. Diese Erkenntnisse eröffnen für zukünftige Arbeiten die Möglichkeit, durch die weitere Optimierung der Vorkultivierung, verbunden mit einer eventuell noch besseren Überlebensrate der ursprünglich eingebrachten Zellen, die Herstellung von klinisch geeigneten Konstrukten aus Fettgewebe weiter voranzutreiben. / The generation of adipose tissue that can be clinically used in plastic and reconstructive surgery is a very important aspect of current tissue engineering work, i.e. the generation of specific tissue from donor cells. Should it be possible to grow new tissue from the patient's own cells, it would result a plethora of new treatment options for tissue defects. In a previous work to the present work it was shown that the adipogenesis in vivo of adipose tissue from precursor cells, the preadipocytes, can be influenced by suitable methods of preculturing in vitro. The differences in the pretreatment were an induction of the differentiation of the preadipocytes with simultaneous stop of the proliferation and a subsequent differentiation phase of the cells in vitro in the incubator. The resulting constructs were implanted in four groups of three mice each and removed and examined after 1, 5, 12 and 24 weeks. While the preadipocytes of group 1 did not experience induction, this did occur in the other three groups. The constructs of group 2 were then already implanted after 2 days of the induction of the preadipocytes, the constructs of group 3 remained in the incubator for 7 days for differentiation, those of group 4 for 33 days before they were introduced into the test animals. The aim of the present work was initially to carry out a histomorphometric analysis of the resulting adipocytes in vivo over time on the tissue constructs of the previous work in order to present a detailed assessment of the course of adipose tissue development based on the resulting cell counts. For this purpose, the thin tissue sections of the mice were examined microscopically after HE staining and the cell counts resulting from immature and mature adipocytes were quantified histomorphometrically. The differentiation was made by means of a size assignment, with cells smaller than 20 µm in diameter being assigned to immature and cells larger than 20 µm in diameter being assigned to mature adipocytes. The quantitative analysis by means of histomorphometry showed that in all constructs the number of cells of the order of magnitude of less than 20 µm assigned to immature adipocytes tends to remain small during the entire time in vivo. In contrast, the cell counts resulting from large cells with a diameter of more than 20 µm, which were assigned to the mature adipocytes, increased slightly in all samples, the constructs of group 4 exhibiting the absolute highest value. Accordingly, a large number of mature adipocytes can be seen in group 4 of the HE staining. The second aim of this work was to follow the adipogenesis by staining characteristic proteins of the extracellular matrix by means of labeled antibodies and a subsequent immunohistochemical analysis of the course of the signal intensity of these labeled components in the ECM by analyzing the resulting scaffold proteins. For this purpose, the formation of collagens I, IV and VI as well as laminin as components of the ECM was analyzed through an extensive immunohistochemical analysis and thus the type and extent of the extracellular matrix formed during adipogenesis was qualitatively assessed. The fluorescence images of the samples after the respective groups and weeks in vivo show a clear indication of the formation of adipose tissue in the tissue constructs of group 4. While in groups 1 and 2 almost all fibrous connective tissue structures, connected with the corresponding rather fibrillar appearance of the signals for the examined collagens I, IV, VI and for laminin could be found, the constructs of group 3 and in particular of group 4 show clearly more pronounced, network-like structures in the fluorescence images. From the results of the present work it can be concluded that the type of pre-cultivation can clearly influence later adipogenesis. A longer incubation period after induction of the preadipocytes to promote maturation to adipocytes before implantation promotes the formation of a higher number of adipocytes and the development of a characteristic ECM. These findings open up the possibility for future work to further advance the production of clinically suitable constructs from adipose tissue through the further optimization of the preculture, combined with a possibly even better survival rate of the originally introduced cells.
40

Amniotic membrane applications for neural tissue engineering

Grisham, Candace Janine 07 October 2019 (has links)
The amniotic membrane is a lining along the inner aspect of the placenta that envelops a developing embryo (then fetus). This component is critical for the adequate growth and nutrition of the fetus and can greatly impact the viability of the fetus. This role in development has led scientists to explore its post-delivery uses in regenerative medicine. Specifically in this paper, current literature was reviewed to determine the applicability of amniotic membranes to neural tissue engineering. The amniotic membrane has been greatly characterized with respect to immune response (including inflammatory effects) and microbial influence. These preliminary characterizations of the amniotic membrane and its components (i.e. stem cells) demonstrated a promising future for clinical implementation. Some fields, such as cardiovascular and orthopedic research, have begun projects using either the amnion-derived stem cells or amniotic membrane as a central element in their research. Both elements have received extensive praise for their versatility and relatively easy implementation into multiple organs and systems in the body. In each of these systems, the amniotic membrane retained its optimal antimicrobial and anti-immunogenic characteristics. After researching the current applications, it was apparent that amniotic membranes could have a place in the future of neural tissue engineering whether it be axillary components (cerebral vessels or surrounding bone) or direct regeneration of nerves. The largest impediment was the lack of basic science understanding in neuroscience. As the specific mechanisms of normal brain behavior and disease states are uncovered amniotic membranes can be added to the pre-clinical testing for the neurological sciences. Similar to the other fields of medicine, amniotic membranes will be specifically useful due to their ability to not evoke an immune response, thereby mitigating the possibility of rejection and infection in the central nervous system. These elements are critical to the research in neurology. Overall, amniotic membrane research would be very valuable to neuroscientists and physicians when exploring the future of neural tissue engineering

Page generated in 0.0868 seconds