• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • Tagged with
  • 8
  • 8
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Patterns of stem respiration within tree, with age, and among species in Pacific Northwest trees /

Pruyn, Michele Lynn. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2003. / Typescript (photocopy). Includes bibliographical references. Also available on the World Wide Web.
2

The role of tissue oxygenation and metalloproteinase expression in stress impaired wound healing

Gajendrareddy, PraveenKumar, January 2004 (has links)
Thesis (Ph. D.)--Ohio State University, 2004. / Title from first page of PDF file. Document formatted into pages; contains xiii, 89 p.; also includes graphics Includes bibliographical references (p. 81-89). Available online via OhioLINK's ETD Center
3

Effect of scaffold architecture on diffusion of oxygen in tissue engineering constructs

Karande, Tejas Shyam. January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
4

Ueber den Einfluss von Calcium- und Magnesiumsalzen auf die sauerstoffatmung der Gewebe

Meier, Karl. January 1933 (has links)
Thesis (doctoral)--Westfälischen Wilhelms-Universituat Münster, 1933.
5

Ueber den Einfluss von Calcium- und Magnesiumsalzen auf die sauerstoffatmung der Gewebe

Meier, Karl. January 1933 (has links)
Thesis (doctoral)--Westfälischen Wilhelms-Universituat Münster, 1933.
6

Effect of scaffold architecture on diffusion of oxygen in tissue engineering constructs

Karande, Tejas Shyam 28 August 2008 (has links)
Viable tissue formation is often observed in peripheral regions of tissue engineering scaffolds whereas the interior fails to support viable tissue. This could be attributed to the fact that as cells within the pores of the scaffold begin to proliferate and secrete extracellular matrix, they simultaneously begin to occlude the pores and decrease supply of nutrients to the interior. Since transport within the scaffold is mainly a function of diffusion, careful design of the diffusion characteristics of the scaffold is critical. These transport issues relate to oxygen and nutrient delivery, waste removal, protein transport and cell migration, which in turn are governed by scaffold porosity and permeability. The current study addresses these issues by evaluating the effect of these architectural parameters on oxygen concentration and cell behavior in the interior of scaffolds with different architectures. Cylindrical polycaprolactone (PCL) scaffolds fabricated using precision extrusion deposition and having the same pore size but different porosities and tortuosities, and hence different permeabilities, were statically seeded with MG63 cells. The bases of the scaffolds were sealed with an impermeable layer of PCL and the scaffolds were surrounded with a tubing of low air permeability to allow diffusion of air into the constructs mainly from the top. These constructs were evaluated at days 1 and 7 for cell viability and proliferation as well as oxygen concentration as a function of depth within the construct. A simple mathematical model was used to describe the process of diffusion of oxygen in these cell-seeded scaffolds of varying permeability. It was hypothesized that there would be better diffusion and cell function with increasing permeability. This was found to be true in case of cell viability. However, cell proliferation data revealed no significant differences as a function of depth, day or architecture. Oxygen concentration data revealed trends showing decreasing concentrations of oxygen as a function of depth across all architectures. Tortuosity had a greater influence on oxygen concentration profiles on day 1 compared to porosity, whose effect seemed to dominate on day 7. Overall, porosity seemed to play a greater role than tortuosity in supporting viability, proliferation and oxygen diffusion. / text
7

Die Atmung der verholzten Organe von Altbuchen (Fagus sylvatica L.) in einem Kalk- und einem Sauerhumusbuchenwald / Woody tissue respiration of two old-growth beech forests on base-rich and acidic soils

Strobel, Jörg 28 April 2004 (has links)
No description available.
8

Monte Carlo Simulation to Study Propagation of Light through Biological Tissues

Prabhu Verleker, Akshay 20 September 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Photoacoustic Imaging is a non-invasive optical imaging modality used to image biological tissues. In this method, a pulsating laser illuminates a region of tissues to be imaged, which then generates an acoustic wave due to thermal volume expansion. This wave is then sensed using an acoustic sensor such as a piezoelectric transducer and the resultant signal is converted into an imaging using the back projection algorithm. Since different types of tissues have different photo-acoustic properties, this imaging modality can be used for imaging different types of tissues and bodily organ systems. This study aims at quantifying the process of light conversion into the acoustic signal. Light travels through tissues and gets attenuated (scattered or absorbed) or reflected depending on the optical properties of the tissues. The process of light propagation through tissues is studied using Monte Carlo simulation software which predicts the propagation of light through tissues of various shapes and with different optical properties. This simulation gives the resultant energy distribution due to light absorption and scattering on a voxel by voxel basis. The Monte Carlo code alone is not sufficient to validate the photon propagation. The success of the Monte Carlo code depends on accurate prediction of the optical properties of the tissues. It also depends on accurately depicting tissue boundaries and thus the resolution of the imaging space. Hence, a validation algorithm has been designed so as to recover the optical properties of the tissues which are imaged and to successfully validate the simulation results. The accuracy of the validation code is studied for various optical properties and boundary conditions. The results are then compared and validated with real time images obtained from the photoacoustic scanner. The various parameters for the successful validation of Monte Carlo method are studied and presented. This study is then validated using the algorithm to study the conversion of light to sound. Thus it is a significant step in the quantification of the photoacoustic effect so as to accurately predict tissue properties.

Page generated in 0.0988 seconds