• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 675
  • 123
  • 72
  • 67
  • 67
  • 53
  • 45
  • 8
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 1482
  • 1482
  • 323
  • 323
  • 276
  • 236
  • 218
  • 161
  • 130
  • 128
  • 126
  • 115
  • 115
  • 109
  • 108
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Adipose Tissue Engineering - Development of Volume-Stable 3-Dimensional Constructs and Approaches Towards Effective Vascularization / Tissue Engineering von Fettgewebe - Generierung volumenstabiler 3-dimensionaler Fettgewebe-Konstrukte und Entwicklung effektiver Vaskularisierungsstrategien

Wittmann, Katharina January 2014 (has links) (PDF)
Adipose tissue defects and related pathologies still represent major challenges in reconstructive surgery. Based on to the paradigm ‘replace with alike’, adipose tissue is considered the ideal substitute material for damaged soft tissue [1-3]. Yet the transfer of autologous fat, particularly larger volumes, is confined by deficient and unpredictable long term results, as well as considerable operative morbidity at the donor and recipient site [4-6], calling for innovative treatment options to improve patient care. With the aim to achieve complete regeneration of soft tissue defects, adipose tissue engineering holds great promise to provide functional, biologically active adipose tissue equivalents. Here, especially long-term maintenance of volume and shape, as well as sufficient vascularization of engineered adipose tissue represent critical and unresolved challenges [7-9]. For adipose tissue engineering approaches to be successful, it is thus essential to generate constructs that retain their initial volume in vivo, as well as to ensure their rapid vascularization to support cell survival and differentiation for full tissue regeneration [9,10]. Therefore, it was the ultimate goal of this thesis to develop volume-stable 3D adipose tissue constructs and to identify applicable strategies for sufficient vascularization of engineered constructs. The feasibility of the investigated approaches was verified by translation from in vitro to in vivo as a critical step for the advancement of potential regenerative therapies. For the development of volume-stable constructs, the combination of two biomaterials with complementary properties was successfully implemented. In contrast to previous approaches in the field using mainly non-degradable solid structures for mechanical protection of developing adipose tissue [11-13], the combination of a cell-instructive hydrogel component with a biodegradable porous support structure of adequate texture was shown advantageous for the generation of volume-stable adipose tissue. Specifically, stable fibrin hydrogels previously developed in our group [14] served as cell carrier and supported the adipogenic development of adipose-derived stem cells (ASCs) as reflected by lipid accumulation and leptin secretion. Stable fibrin gels were thereby shown to be equally supportive of adipogenesis compared to commercial TissuCol hydrogels in vitro. Using ASCs as a safe source of autologous cells [15,16] added substantial practicability to the approach. To enhance the mechanical strength of the engineered constructs, porous biodegradable poly(ε caprolactone)-based polyurethane (PU) scaffolds were introduced as support structures and shown to exhibit adequately sized pores to host adipocytes as well as interconnectivity to allow coherent tissue formation and vascularization. Low wettability and impaired cell attachment indicated that PU scaffolds alone were insufficient in retaining cells within the pores, yet cytocompatibility and differentiation of ASCs were adequately demonstrated, rendering the PU scaffolds suitable as support structures for the generation of stable fibrin/PU composite constructs (Chapter 3). Volume-stable adipose tissue constructs were generated by seeding the pre-established stable fibrin/PU composites with ASCs. Investigation of size and weight in vitro revealed that composite constructs featured enhanced stability relative to stable fibrin gels alone. Comparing stable fibrin gels and TissuCol as hydrogel components, it was found that TissuCol gels were less resilient to degradation and contraction. Composite constructs were fully characterized, showing good cell viability of ASCs and strong adipogenic development as indicated by functional analysis via histological Oil Red O staining of lipid vacuoles, qRT-PCR analysis of prominent adipogenic markers (PPARγ, C/EBPα, GLUT4, aP2) and quantification of leptin secretion. In a pilot study in vivo, investigating the suitability of the constructs for transplantation, stable fibrin/PU composites provided with a vascular pedicle gave rise to areas of well-vascularized adipose tissue, contrasted by insufficient capillary formation and adipogenesis in constructs implanted without pedicle. The biomaterial combination of stable fibrin gels and porous biodegradable PU scaffolds was thereby shown highly suitable for the generation of volume-stable adipose tissue constructs in vivo, and in addition, the effectiveness of immediate vascularization upon implantation to support adipose tissue formation was demonstrated (Chapter 4). Further pursuing the objective to investigate adequate vascularization strategies for engineered adipose tissue, hypoxic preconditioning was conducted as a possible approach for in vitro prevascularization. In 2D culture experiments, analysis on the cellular level illustrated that the adipogenic potential of ASCs was reduced under hypoxic conditions when applied in the differentiation phase, irrespective of the oxygen tension encountered by the cells during expansion. Hypoxic treatment of ASCs in 3D constructs prepared from stable fibrin gels similarly resulted in reduced adipogenesis, whereas endothelial CD31 expression as well as enhanced leptin and vascular endothelial growth factor (VEGF) secretion indicated that hypoxic treatment indeed resulted in a pro-angiogenic response of ASCs. Especially the observed profound regulation of leptin production by hypoxia and the dual role of leptin as adipokine and angiogenic modulator were considered an interesting connection advocating further study. Having confirmed the hypothesis that hypoxia may generate a pro-angiogenic milieu inside ASC-seeded constructs, faster vessel ingrowth and improved vascularization as well as an enhanced tolerance of hypoxia-treated ASCs towards ischemic conditions upon implanatation may be expected, but remain to be verified in rodent models in vivo (Chapter 5). Having previously been utilized for bone and cartilage engineering [17-19], as well as for revascularization and wound healing applications [20-22], stromal-vascular fraction (SVF) cells were investigated as a novel cell source for adipose tissue engineering. Providing cells with adipogenic differentiation as well as vascularization potential, the SVF was applied with the specific aim to promote adipogenesis and vascularization in engineered constructs in vivo. With only basic in vitro investigations by Lin et al. addressing the SVF for adipose repair to date [23], the present work thoroughly investigated SVF cells for adipose tissue construct generation in vitro, and in particular, pioneered the application of these cells for adipose tissue engineering in vivo. Initial in vitro experiments compared SVF- and ASC-seeded stable fibrin constructs in different medium compositions employing preadipocyte (PGM-2) and endothelial cell culture medium (EGM-2). It was found that a 1:1 mixture of PGM-2 and EGM-2, as previously established for co-culture models of adipogenesis [24], efficiently maintained cells with adipogenic and endothelial potential in SVF-seeded constructs in short and long-term culture setups. Observations on the cellular level were supported by analysis of mRNA expression of characteristic adipogenic and endothelial markers. In preparation of the evaluation of SVF-seeded constructs under in vivo conditions, a whole mount staining (WMS) method, facilitating the 3D visualization of adipocytes and blood vessels, was successfully established and optimized using native adipose tissue as template (Chapter 6). In a subcutaneous nude mouse model, SVF cells were, for the first time in vivo, elucidated for their potential to support the functional assembly of vascularized adipose tissue. Investigating the effect of adipogenic precultivation of SVF-seeded stable fibrin constructs in vitro prior to implantation on the in vivo outcome, hormonal induction was shown beneficial in terms of adipocyte development, whereas a strong vascularization potential was observed when no adipogenic inducers were added. Via histological analysis, it was proven that the developed structures were of human origin and derived from the implanted cells. Applying SVF cells without precultivation in vitro but comparing two different fibrin carriers, namely stable fibrin and TissuCol gels, revealed that TissuCol profoundly supported adipose formation by SVF cells in vivo. This was contrasted by only minor SVF cell development and a strong reduction of cell numbers in stable fibrin gels implanted without precultivation. Histomorphometric analysis of adipocytes and capillary structures was conducted to verify the qualitative results, concluding that particularly SVF cells in TissuCol were highly suited for adipose regeneration in vivo. Employing the established WMS technique, the close interaction of mature adipocytes and blood vessels in TissuCol constructs was impressively shown and via species-specific human vimentin staining, the expected strong involvement of implanted SVF cells in the formation of coherent adipose tissue was confirmed (Chapter 7). With the development of biodegradable volume-stable adipose tissue constructs, the application of ASCs and SVF cells as two promising cell sources for functional adipose regeneration, as well as the thorough evaluation of strategies for construct vascularization in vitro and in vivo, this thesis provides valuable solutions to current challenges in adipose tissue engineering. The presented findings further open up new perspectives for innovative treatments to cure soft tissue defects and serve as a basis for directed approaches towards the generation of clinically applicable soft tissue substitutes. / In der rekonstruktiven Chirurgie besteht ein ständig wachsender Bedarf an geeigneten Implantaten, um Weichteildefekte nach Tumorresektionen, Traumata, oder aufgrund von kongenitalen Missbildungen adäquat ersetzen zu können [1]. Hierbei stellt körpereigenes Fettgewebe als Weichteilersatz das ideale Substitutionsmaterial dar [2-4]. Derzeit angewandte Wiederherstellungsmethoden verwenden frei transplantierbare und gestielte Lappenplastiken aus autologem Fettgewebe oder greifen auf künstliche Kollagen- und Silikonimplantate zurück [5]. Diese Ansätze sind jedoch zum Teil mit gravierenden Nachteilen behaftet, wie Absorption und Nekrotisierung bei transplantiertem körpereigenem Fettgewebe, sowie Fremdkörperreaktionen und fibrotischen Verkapselungen bei Kollagen und Silikon. Insbesondere die Versorgung großvolumiger Defekte ist mit komplexen chirurgischen Eingriffen verbunden und geht häufig mit Komplikationen wie Infektionen, Narbenbildung und Volumenverlust, sowie Defiziten an der Hebe- und Empfängerstelle einher [1,5-8]. Es besteht daher ein großer Bedarf an innovativen Methoden und der Entwicklung neuer Materialien, die einen dauerhaften körpereigenen Weichteilersatz ermöglichen. Das interdisziplinäre Feld des Tissue Engineerings von Fettgewebe zielt auf die Entwicklung neuer Ansätze zur Regeneration von Weichteildefekten und der Bereitstellung von biologisch äquivalentem Gewebeersatz, vor allem für die Rekonstruktion großvolumiger Defekte. Verringerte Volumenstabilität und unzureichende Blutgefäßversorgung stellen jedoch auch bei durch Tissue Engineering hergestelltem Gewebe zentrale Limitationen dar [5,8,9]. Für die erfolgreiche Substitution von Weichteildefekten mit Methoden des Tissue Engineerings ist es daher essenziell, Gewebekonstrukte mit ausreichender Volumenstabilität bereitzustellen, um auch nach Implantation in vivo langfristig zu bestehen, sowie eine adäquate Blutgefäßversorgung zu gewährleisten, um Zellüberleben und Differenzierung für eine vollständige Geweberegeneration zu garantieren [5,10]. Folglich war es Ziel dieser Arbeit, volumenstabile Fettgewebekonstrukte zu entwickeln und neue Strategien zur Vaskularisierung der generierten Konstrukte zu evaluieren. Als wichtiger Schritt in Bezug auf eine potenzielle klinische Anwendbarkeit wurden außerdem vielversprechende In-vitro-Ansätze auf den In-vivo-Kontext in etablierten Mausmodellen übertragen. Für die Entwicklung volumenstabiler Fettgewebekonstrukte wurde die Kombination zweier Biomaterialien mit komplementären Eigenschaften verfolgt. So wurden für die Konstruktherstellung Fibrinhydrogele als Zellträger mit hochporösen bioabbaubaren Scaffolds als mechanische Schutzstrukturen kombiniert. Im Gegensatz zu bisherigen Ansätzen zur Verbesserung der Volumenstabilität, in denen hauptsächlich nicht abbaubare, rigide Gerüst- oder Hohlkörperstrukturen zum mechanischen Schutz des entstehenden Gewebes appliziert wurden [11-13], wurden hier ausschließlich bioabbaubare und Gewebe kompatible Materialien verwendet. Dabei konnte auf bereits zuvor entwickelte stabile Fibringele [14] zurückgegriffen werden, die in dieser Arbeit erstmals für das Fettgewebe Engineering als Zellträger für mesenchymale Stammzellen aus dem Fettgewebe (adipose-derived stem cells; ASCs) verwendet wurden. Mittels sich ergänzender Analysemethoden auf zellulärer (Oil Red O-Färbung) und molekularer Ebene (Leptin Sekretion; ELISA) konnte erfolgreich die adipogene Differenzierung der in den Fibringelen inkorporierten ASCs nachgewiesen werden. Im Vergleich zu kommerziell erhältlichem Fibrin (TissuCol, Baxter) zeigten ASCs in den stabilen Fibringelen eine mit TissuCol vergleichbare, gute adipogene Differenzierbarkeit. Durch die Verwendung von ASCs als sichere und autologe Zellquelle [15,16] für die Konstruktherstellung wurde zudem die potenzielle klinische Anwendbarkeit der generierten Zell-Biomaterial-Konstrukte erhöht. Zur Verbesserung der Volumenstabilität wurden bioabbaubare Poly(ε caprolacton)-basierte Polyurethan-Scaffolds als zusätzliche Gerüststruktur evaluiert. Aufgrund ihrer hohen Porosität und Interkonnektivität stellten sich die Scaffolds als besonders geeignet für die Differenzierung von Adipozyten sowie für die Generierung von kohärentem Fettgewebe heraus. Bei direkter Besiedelung mit ASCs wiesen die PU-Scaffolds zwar eine geringe Zelladhäsion und inhomogene Zellverteilung auf, die adipogene Differenzierung der Zellen war jedoch nicht beeinträchtigt. Daraufhin wurde die Generierung von Fibrin/PU Kompositkonstrukten durch Kombination der PU-Scaffolds mit den zuvor untersuchten stabilen Fibringelen angestrebt (Kapitel 3). Durch Zusammenführung der stabilen Fibringele als Zellträger für ASCs mit den PU Scaffolds als zusätzlicher Gerüststruktur konnten in folgenden Arbeiten erfolgreich homogene und mechanisch stabile Fettgewebekonstrukte hergestellt werden. Die detaillierte Evaluation von Größe und Gewicht zeigte, dass in den Kompositkonstrukten durch die zusätzliche poröse PU-Scaffoldstruktur eine erhöhte Stabilität im Vergleich zu den stabilen Fibringelen als alleinigem Zellträger erreicht werden konnte. Der Vergleich der stabilen Fibringele mit TissuCol als Hydrogelkomponente zeigte, dass TissuCol-Gele unter In vitro Kulturbedingungen stärker kontrahierten und schneller abgebaut wurden. Die in den Kompositkonstrukten inkorporierten ASCs zeigten gute Viabilität sowie deutliche adipogene Differenzierung auf histologischer (Oil Red O-Färbung) als auch auf molekularer Ebene (qRT-PCR; ELISA). In einer In-vivo-Pilotstudie wurden die Kompositkonstrukte auf ihre Transplantierbarkeit hin überprüft und durch mikrochirurgische Insertion eines Durchflussgefäßes bei der Implantation unmittelbar vaskularisiert. In stabilen Fibrin/PU Konstrukten mit integriertem Gefäßstiel wurde so die Entwicklung von vaskularisiertem Fettgewebe im Vergleich zu ungestielten Konstrukten entschieden verbessert. Mittels der erfolgreichen In-vivo-Implantation der Kompositkonstrukte konnte die Anwendbarkeit der Biomaterialkombination aus stabilem Fibrin und porösen PU Scaffolds für die Generierung volumenstabiler Fettgewebekonstrukte demonstriert und gleichzeitig der positive Effekt einer direkten Vaskularisierung durch Integration eines Gefäßstiels gezeigt werden (Kapitel 4). Im Rahmen der weiteren Evaluation potenzieller Vaskularisierungsstrategien wurden im Anschluss Ansätze zur Prävaskularisierung in vitro untersucht. Hierbei stellte die hypoxische Vorkultur von mittels Tissue Engineering generierten Fettgewebekonstrukten einen möglichen Ansatz zur Schaffung eines pro-angiogenen, vaskularisierungsfördernden Milieus innerhalb der Konstrukte dar. Ebenso von Interesse waren in diesem Zusammenhang die Auswirkungen von Hypoxie auf die adipogene Differenzierung von ASCs. Erste Versuche im 2D-Kulturformat mit ASCs zeigten, dass das adipogene Potenzial der Zellen unter Hypoxie in der Differenzierungsphase stark vermindert war, wobei der während der Expansionsphase der Zellen bestehende Sauerstoffpartialdruck keinen Einfluss auf die Fettentwicklung hatte. Auch in 3D-Konstrukten basierend auf stabilen Fibringelen konnte eine verringerte adipogene Differenzierung von ASCs unter hypoxischer Kultur nachgewiesen werden, dabei wurden im Gegenzug endotheliale Marker (CD31) und pro angiogene Wachstumsfaktoren, wie z.B. vaskulärer endothelialer Wachstumsfaktor (VEGF), aber auch das Adipokin Leptin, stark hochreguliert. Insbesondere die deutliche Veränderung der Leptinsekretion unter hypoxischen Kulturbedingungen und die duale Rolle von Leptin als adipogener und pro-angiogener Faktor ergeben interessante Perspektiven für weiterführende Untersuchungen. Basierend auf den gezeigten Ergebnissen konnte insgesamt bestätigt werden, dass die hypoxische Vorkultur in vitro zur Entstehung eines pro angiogenen und potenziell vaskularisierungsfördernden Milieus beitragen kann. Es gilt nun in Folgestudien das Potenzial der hypoxischen Vorkultur zur Verbesserung der Vaskularisierung in vivo, sowie eine erhöhte Toleranz der implantierten Zellen gegenüber hypoxischen Bedingungen nach der Implantation in etablierten In-vivo-Mausmodellen zu verifizieren (Kapitel 5). Ein weiterer Ansatz zur Generierung von vaskularisiertem Fettgewebe in vitro und in vivo wurde durch den Einsatz der stromalen-vaskulären Fraktion (SVF) als neue Zellquelle für das Fettgewebe-Engineering verfolgt. Bisher wurde die SVF hauptsächlich für das Tissue Engineering von Knochen- und Knorpelgewebe [17-19] oder für Vaskularisierungs- und Wundheilungsansätze [20-22] untersucht. In der SVF enthalten sind sowohl Fettvorläuferzellen als auch Endothelzellen, Perizyten, Fibroblasten und Immunzellen [8]. Durch Verwendung dieses heterogenen Zellgemisches sollte die simultane Entwicklung von Fettzellen und vaskulären Strukturen erreicht werden, und damit eine schnellere und effizientere Fettgewebeentwicklung in vivo. Da sich bisher nur eine In-vitro-Studie explizit dem Tissue Engineering von Fettgewebe mit SVF-Zellen widmet [23], wurden in dieser Arbeit SVF-besiedelte Fettgewebekonstrukte basierend auf Fibringelen als Zellträger zunächst umfassend in vitro charakterisiert und erstmals die Fettgewebeentwicklung der Zellen im Mausmodell in vivo untersucht. In vorbereitenden In-vitro-Arbeiten wurden SVF-besiedelte stabile Fibringele mit den bisher verwendeten ASC-basierten Konstrukten verglichen. Dabei wurde zunächst die adipogene und endotheliale Differenzierbarkeit der SVF in unterschiedlichen Zellkulturmedien untersucht. Eine 1:1-Mischung aus Präadipozytenmedium (PGM-2) und Endothelzellmedium (EGM-2), die zuvor schon für Kokulturexperimente von ASCs und Endothelzellen verwendet worden war [24], stellte sich als besonders geeignet für die Kurz- und Langzeitkultur der SVF in stabilen Fibringelen heraus. Umfassende histologische Untersuchungen zeigten, dass mit Hilfe dieser Medienkomposition insbesondere das adipogene und endotheliale Differenzierungspotenzial der verschiedenen Zelltypen in der SVF innerhalb der generierten 3D-Konstrukte erhalten werden kann. Die auf zellulärer Ebene gewonnenen Erkenntnisse konnten mittels qRT-PCR-Analyse von adipogenen und endothelialen Markern (PPARγ, aP2, CD31) auf mRNA-Ebene bestätigt werden. Um in Zukunft die In-vivo-Untersuchung der generierten Fettgewebekonstrukte zu erleichtern, sowie eine strukturelle Analyse des Gewebeverbands und insbesondere die Interaktion von Adipozyten und Blutgefäßen zu ermöglichen, wurde zusätzlich eine 3D-Färbetechnik (Whole Mount Staining), zunächst unter Verwendung von nativem humanem Fettgewebe, etabliert (Kapitel 6). In einer anschließenden umfassenden Studie in immundefizienten Nacktmäusen (NMRI Foxn1nu/Foxn1nu) wurden SVF-Zellen zum ersten Mal in vivo für das Engineering von vaskularisiertem Fettgewebe untersucht. Hierbei wurden sowohl der Effekt der In vitro Vorkultur der SVF-basierten Konstrukte als auch der Einfluss des Trägermaterials auf die Gewebeentwicklung in vivo evaluiert. Die adipogene Vorkultur der SVF-besiedelten Konstrukte in vitro über einen Zeitraum von 7 Tagen vor Implantation wirkte sich positiv auf die Fettdifferenzierung in vivo aus, wohingegen die Vorkultur unter nicht-induzierten Bedingungen ohne adipogene Induktion verstärkt zur Bildung von vaskulären Strukturen führte. Durch Spezies-spezifische Färbung gegen humanes Vimentin konnte gezeigt werden, dass die beobachteten Strukturen humanen Ursprungs waren und daher von den implantierten SVF-Zellen stammten. Der Einfluss des Trägermaterials auf die Gewebebildung in vivo wurde durch Besiedelung stabiler Fibringele und TissuCol-Gele mit SVF-Zellen verglichen. Die Konstrukte wurden ohne In-vitro-Vorkultur direkt nach der Herstellung implantiert. Hier zeigte sich in stabilen Fibringelen nach 4 Wochen in vivo keine nennenswerte Gewebeentwicklung, wobei auch der Anteil an humanen Zellen innerhalb der Konstrukte zum Zeitpunkt der Explantation stark verringert war. Im Gegensatz dazu konnte in TissuCol-Gelen die Entwicklung von kohärentem und maturem Fettgewebe nachgewiesen werden von dem große Teile humanen Ursprungs waren. Die histologischen Ergebnisse wurden mittels histomorphometrischer Quantifizierung von Adipozyten und Blutgefäßstrukturen verifiziert, wodurch das herausragende Potenzial der SVF für das Fettgewebe-Engineering in vivo nochmals verdeutlicht wurde. Unter Verwendung der zuvor etablierten 3D-Färbetechnik (Whole Mount Staining) konnten anschließend Adipozyten und Blutgefäße innerhalb des entstandenen kohärenten Gewebeverbands in TissuCol-Gelen visualisiert werden. Mit Hilfe einer humanspezifischen Färbung in 3D konnte zusätzlich die weitreichende Beteiligung der implantierten SVF Zellen bei der Gewebeentwicklung nachgewiesen werden (Kapitel 7). Die in der Dissertation entwickelten bioabbaubaren volumenstabilen Fettgewebekonstrukte, die Untersuchung von ASCs und SVF-Zellen als vielversprechende regenerative Zellquellen für die Generierung funktioneller Konstrukte, sowie die Evaluation unterschiedlicher Vaskularisierungsstrategien in vitro und in vivo leisten einen wichtigen Beitrag zu neuen und innovativen Ansätzen im Bereich des Tissue Engineerings von Fettgewebe. Die Ergebnisse stellen eine Grundlage für die zielgerichtete Entwicklung regenerativer Implantate dar und eröffnen neue Perspektiven für die Generierung klinisch anwendbarer Fettgewebekonstrukte als Weichteilersatz.
72

Etablierung eines humanen 3D Lungentumor-Testsystems zur Analyse von Behandlungseffekten / Establishment of a human 3D lung tumor test system for the analysis of treatment effects

Göttlich, Claudia January 2019 (has links) (PDF)
Lungenkrebs ist weltweit für die meisten krebsassoziierten Tode verantwortlich. Ursache dafür ist unter anderem, dass viele Medikamente in der klinischen Anwendung, aufgrund nicht übertragbarer Ergebnisse aus der Präklinik, scheitern. Zur Entwicklung neuer Therapiestrategien werden deshalb Modelle benötigt, welche die in vivo Situation besser widerspiegeln. Besonders wichtig ist es dabei, zu zeigen, für welche Fragestellungen ein neues Testsystem valide Ergebnisse liefert. In dieser Arbeit ist es mit Hilfe des Tissue Engineering gelungen, ein humanes 3D in vitro Lungentumor-Testsystem weiter zu entwickeln und für verschiedene Fragestellungen zu validieren. Zudem konnten sowohl für die Herstellung als auch für die Behandlung der Tumormodelle SOPs etabliert werden. Hier wurde zunächst beobachtet, dass die Auswerteparameter für die Beurteilung von Behandlungseffekten eine geringe Varianz aufweisen und das 3D Modell deshalb als Testsystem geeignet ist. Ein Vergleich der Morphologie, des EMT-Status und der Differenzierung der Tumorzelllinien im 3D Modell mit Tumorbiopsaten von Adenokarzinompatienten verdeutlichte, dass die 3D Modelle tumorrelevante Merkmale besitzen. So sind die Zelllinien auf der biologischen Matrix, verglichen mit der jeweiligen 2D Kultur, durch eine reduzierte Proliferationsrate gekennzeichnet, welche eher der in vivo Situation entspricht. Für die Etablierung und Validierung des 3D Modells als Testsystem war es notwendig, klinisch relevante Therapien in dem Modell anzuwenden und die Ergebnisse der Behandlung in vitro mit denen im Patienten zu vergleichen. Dabei konnte zunächst bestätigt werden, dass eine zielgerichtete Therapie gegen den EGFR in dem 3D System zu einer verstärkten Induktion der Apoptose im Vergleich zu 2D führt. Dies entspricht klinischen Beobachtungen, bei denen EGFR-mutierte Patienten gut auf eine Therapie mit Tyrosin-Kinase-Inhibitoren (TKI) ansprechen. Anschließend wurde in dieser Arbeit erstmals in vitro gezeigt, dass die Behandlung mit einem HSP90-Inhibitor bei KRAS-Mutation wie in behandelten Patienten keine eindeutigen Vorteile bringt, diese jedoch in Experimenten der 2D Zellkultur mit den entsprechenden Zelllinien vorhergesagt werden. Die Ergebnisse aus dem in vitro Modell spiegeln damit verschiedene klinische Studien wider und unterstreichen das Potenzial des 3D Lungentumor-Testsystems die Wirkung zielgerichteter Therapien vorherzusagen. Durch die Messung von Signalwegsaktivierungen über Phospho-Arrays und Western Blot konnten in dieser Arbeit Unterschiede zwischen 2D und 3D nach Behandlung gezeigt werden. Diese lieferten die Grundlage für bioinformatische Vorhersagen für Medikamente. Mit fortschreitender Erkrankung und dem Entstehen invasiver Tumore, die möglicherweise Metastasen bilden, verschlechtert sich die Prognose von Krebspatienten. Zudem entwickeln Patienten, die zunächst auf eine Therapie mit TKI ansprechen, bereits nach kurzer Zeit Resistenzen, die ebenfalls zur Progression des Tumorwachstums führen. Zur Wirkungsuntersuchung von Substanzen in solchen fortgeschrittenen Erkrankungsstadien wurde das bestehende Testsystem erweitert. Zum einen wurde mit Hilfe des Wachstumsfaktors TGF-β1 eine EMT ausgelöst. Hier konnte beobachtet werden, dass sich die Expression verschiedener EMT- und invasionsassoziierter Gene und Proteine veränderte und die Zellen vor allem in dynamischer Kultur verstärkt die Basalmembran der Matrix überquerten. Zum anderen wurde die Ausbildung von Resistenzen gegenüber TKI durch die Generierung von resistenten Subpopulationen aus einer ursprünglich sensitiven Zelllinie und anschließender Kultivierung auf der Matrix abgebildet. Dabei zeigte sich keine der klinisch bekannten Mutationen als ursächlich für die Resistenz, sodass weitere Mechanismen untersucht wurden. Hier konnten Veränderungen in der Signaltransduktion sowie der Expression EMT-assoziierter Proteine festgestellt werden. Im letzten Teil der Arbeit wurde eine neuartige Behandlung im Bereich der Immuntherapie erfolgreich in dem 3D Modell angewendet. Dafür wurden T-Zellen, die einen chimären Antigen-Rezeptor (CAR) gegen ROR1 tragen, in statischer und dynamischer Kultur zu den Tumorzellen gegeben und der Therapieeffekt mittels histologischer Färbung und der Bestimmung der Apoptose evaluiert. Zusätzlich konnten Eigenschaften der T-Zellen, wie deren Proliferation sowie Zytokinausschüttung quantifiziert und damit eine spezifische Wirkung der CAR transduzierten T-Zellen gegenüber Kontroll-T-Zellen nachgewiesen werden. Zusammenfassend ist es in dieser Arbeit gelungen, ein humanes 3D Lungentumor-Testsystem für die Anwendung in der präklinischen Entwicklung von Krebsmedikamenten sowie der Grundlagenforschung im Bereich der Tumorbiologie zu etablieren. Dieses Testsystem ist in der Lage relevante Daten zu Biomarker-geleiteten Therapien, zur Behandlung fortgeschrittener Tumorstadien und zur Verbesserung neuartiger Therapiestrategien zu liefern. / Lung cancer is the most common cause of cancer related deaths worldwide. One reason for this is that many drugs fail in the clinical application due to inefficient transferability of preclinical results. Consequently, for the development of new treatment strategies tumor models that better reflect the in vivo situation are required. It is of special significance to show for which questions a new test system provides valid results. In the here presented work, a human 3D in vitro lung tumor test system was refined and validated for different interrogations using tissue engineering methods. The generation of the model as well as its treatment were defined in SOPs. First, it was shown that the variance of the analysis parameters was low, demonstrating the 3D model to be suitable as a test system. A comparison of the morphology, the EMT status and the differentiation of the tumor cell lines in the 3D model with tumor biopsies from adenocarcinoma patients revealed that the 3D tumor models exhibit tumor relevant characteristics. The cells on the matrix had a lower proliferation rate compared to the respective 2D culture that better mimic the in vivo situation. For the establishment and validation of the test system, clinically relevant therapies were applied and the results of the treatment in vitro were compared to those in patients. By doing so, it was confirmed that a targeted therapy against the EGFR led to an increased apoptosis induction in the 3D system compared to 2D. This resembles clinical observations, in which EGFR-mutated patients respond to the therapy with tyrosine kinase inhibitors (TKIs). Next, it was shown for the first time in vitro in the 3D model that the treatment with a HSP90 inhibitor in the context of a KRAS mutation has no clear advantages as observed in patients, but which had been predicted in 2D cell culture. The results from the in vitro model match several clinical studies and emphasize the potential of the 3D lung tumor test system to predict the effect of targeted treatments. By measuring the activation of signal transduction pathways using phospho-arrays and western blots, differences between 2D and 3D after treatment were shown. These provided the basis for bioinformatic drug predictions. With the progress of the disease and the development of invasive tumors that might form metastases, the prognosis of patients worsens. Additionally, patients that initially respond to a therapy with TKIs develop resistances that also lead to the progression of tumor growth. To evaluate the effect of substances in these life-threatening disease stages, the existing test system was enhanced. On the one hand EMT was induced by addition of the growth factor TGF-β1. Here, it was observed that the expression of several EMT- and invasion-associated genes and proteins changed and the cells crossed the basement membrane to a higher extent, especially in the dynamic culture. On the other hand, the development of resistances against TKIs was represented by the generation of resistant subpopulations from an initial sensitive cell line and subsequent culture on the matrix. In the course of this experiment, none of the known mutations could be attributed to the resistance, so that other potential mechanisms were investigated. Here, changes in the signal transduction as well as in the expression of EMT-associated proteins were found. In the last part of the thesis, a new treatment strategy in the field of immune therapies was successfully tested in the 3D model. For that, T cells bearing a chimeric antigen receptor (CAR) against ROR1 were added to the tumor cells in static and dynamic culture. The therapy effect was determined by histological staining and apoptosis meas-urement. Moreover, the characteristics of the T cells, such as proliferation or cytokine release, were quantified and exhibited a specific effect of the CAR transduced T cells compared to the control T cells. In summary, in this thesis a human 3D lung tumor test system was established for the application in preclinical testing of cancer drugs as well as for basic research in tumor biology. It was shown that the test system can provide relevant data on biomarker-driven therapies, the treatment of advanced tumor stages and the improvement of new treatment strategies.
73

Biomechanische und zellbiologische Untersuchung zu augmentierten Biomaterial-basierten Kreuzbandkonstrukten / Mechanical and cell-biological properties of crosslinked kollagen scaffolds for acl reconstruction

Klug, Alexander January 2016 (has links) (PDF)
Aktueller Goldstandard bei der Rekonstruktion des ACL des Menschen sind au-tologe Transplantate. Diese sind allerdings je nach Entnahmeort mit einer mehr oder weniger hohen Entnahmemorbidität und dem Risiko für Folgeerkrankungen verbunden. Um dies zu umgehen, wurde ein xenogenes Kollagenimplantat aus Kollagen-I-Fasern von Ratten entwickelt und das native Konstrukt bereits in einer Vorläuferstudie getestet. Im Rahmen dieser Arbeit wurden diese Kreuzbandkonstrukte mit Hilfe diverser Crosslinker modifiziert und hinsichtlich ihrer Biomechanik, Biokompatibilität und ihres in-vivo Verhaltens untersucht. Bewusst wurde dabei auf die Zellbesiedlung dieser Konstrukte verzichtet, da un-ter Berücksichtigung wirtschaftlicher Gesichtspunkte eines späteren humanen Einsatzes hierfür eine Arzneimittelzulassung notwendig gewesen wäre. Mit Hilfe der Crosslinker wurde versucht, die mechanische Stabilität sowie die Resistenz gegen kollagenabbauende Enzyme der Synovia zu erhöhen, um die Gefahr post-operativer Instabilitäten zu verringern. Dabei sollten Fragen bezüglich Immun-antwort, Biokompatibilität sowie Biodegradierbarkeit genau berücksichtigt wer-den. Als Crosslinker wurden für einen Vergleich in vitro neben 0,5 % Genipin auch 10 % HMDI sowie Glukose und EDC/NHS herangezogen. Dabei zeigten die Genipin-gecrosslinkten Einzelfasern die größte Reißfestigkeits-zunahme, wohingegen auf Minikonstruktbasis 10 % HMDI zu den höchsten UTS-Werten führte. Ebenso ließen sich bezüglich der Biokompatibilutät in vitro bei den Crosslinkern 0,5 % Genipin und 10 % HMDI Vorteile gegenüber den beiden an-deren erkennen. Schließlich erfolgte im Rahmen eines Tierversuchs an 16 Minipigs der Einbau von 0,5 % Genipin-gecrosslinkten Konstrukten als Kreuzbandersatz und an-schließend die biomechanische Testung sowie nach Paraffineinbettung auch eine durchlichtmikrokopische deskriptive Auswertung der Transplantate. Während nach 6 Wochen eine deutliche Reißfestigkeitsabnahme zu verzeichnen war, erreichte diese nach 6 Monaten wieder fast 60 % ihrer ursprünglichen UTS. Somit konnte ein Remodeling des eingesetzten Implantats angenommen wer-den. Dies bestätigte sich in der durchgeführten histologischen Untersuchung. Hier war das Implantat deutlich vaskularisiert, von zahlreichen Fibroblasten durchsetzt und wies eine synoviale Deckschicht auf. Allerdings scheint vor allem wegen der Schwäche der Konstrukte nach 6 Wochen sowie den vermutlich auf-grund des Crosslinkers auftretenden Reaktionserscheinungen innerhalb des Kniegelenks ein Einsatz im humanen Bereich zum gegenwärtigen Zeitpunkt noch nicht ausgereift. Dennoch lässt sich gerade anhand des stattfindenden Remodelings das große Potential kollagenbasierter Materialien für den Kreuzbandersatz erkennen. Eine weitere Optimierung des bestehenden Konstrukts sollte deshalb forciert werden. / We developed an ACL-scaffold consisting of crosslinked preformed rat collagen fibres. In this study we examined the influence of several crosslinking substances on the mechanical and cell-biological properties of this scaffold in vitro as well as in vivo as part of a minipig model. The results were promising thus more studies have to be made before an use for humans can be recommended.
74

Design and synthesis of biodegradable thermoplastic polyurethanes for tissue engineering

Moore, Timothy Graeme, tim.moore@csiro.au January 2005 (has links)
The aim of this study was to design and synthesise thermoplastic biodegradable and biocompatible polyurethanes for tissue engineering applications. A secondary aim was to tailor a range of degradation rates of the polyurethanes to suit a broad spectrum of tissue engineering applications. Various factors were systematically investigated in order to provide a means of controlling mechanical, thermal and degradation properties of the polyurethanes. The factors investigated included variation of the hard segment percentage, the diisocyanate, the soft segment macrodiol as well as the chain extender. Soft segment macrodiols were synthesised for this study including a poly(γ-butyrolactone) macrodiol which has been used to make biodegradable aliphatic poly(ester-urethane) for the first time. A novel range of degradable chain extenders was also developed and has been reported. The polymers were characterised using Gel Permeation Chromatography (GPC), Instron tensile testing, Differential Scanning Calorimetry (DSC) and Shore hardness. Cell culture testing was performed as was a three-month degradation study which showed the polyurethanes to be biocompatible and biodegradable respectively. Selected materials were shown to be suitable for scaffold fabrication using Fused Deposition Modelling (FDM), and the scaffolds made were further shown to support primary fibroblast growth in vitro.
75

Matrixproteine im tissue engineerten Meniskus

Conrades, Verena. Unknown Date (has links) (PDF)
München, Techn. Universiẗat, Diss., 2007.
76

Gelatin Based Scaffolds for Bone Tissue Engineering

Vial, Ximena 01 January 2008 (has links)
Bone is a dynamic tissue that in some cases, due to fractures, infection or interruption of blood supply, does not repair completely, leading to bone loss; therefore it is necessary to recur to bone grafts. However, bone grafts (i.e.autografts) may require additional surgery and present risks associated with potential disease transmission from donor to recipient (i.e.allografts). The limitations of these grafts have encouraged the pursuit of engineered alternatives that are based on the synchronous interplay between biomaterials, biological macromolecules and cells. 3-D gelatin-based scaffolds were prepared and evaluated for their ability to promote osteogenesis. Three types of gelatin based scaffolds were prepared via the crosslinking of gelatin B with glutaraldehyde or EDC/NHS in the presence or absence of PLG . The porosity and pore size of the scaffolds were controlled by varying the freeze-drying temperature (-20°C and -80°C). To promote osteogenesis, human stromal MIAMI cells were incorporated in the scaffolds. Results demonstrated MIAMI cells grew and spread actively throughout gelatin and gelatin/PLG scaffolds after 14 days of incubation. The rate of osteogenic activity was confirmed through histochemical staining for alkaline phosphatase and calcium. Mineral deposition was increased in the gelatin scaffold as opposed to the gelatin/PLG scaffold after at day 35.
77

Integration of Tissue-engineered Cartilage – An In Vitro Model

Theodoropoulos, John 27 November 2012 (has links)
The ability of articular cartilage to self-repair after injury is limited due to the nature of the tissue. Biological repair is a promising treatment for cartilage injuries but success is limited by the ability to integrate with native cartilage. An in vitro model can be developed to investigate factors that regulate cartilage repair. A tissue engineered cartilage construct was placed into a host bovine osteochondral explant and cultured for 4 and 8 weeks. This same construct was cultured under stimulated and unstimulated conditions for 2 and 4 weeks. Autologous osteochondral implants served as controls. Integration was evaluated histologically, biochemically, biomechanically and for changes in gene expression. The tissue-engineered implants integrated over time whereas the autologous implants did not. Mechanical stimulation and prolonged incubation improved integration between implant and host tissue. An in vitro model of repair-native cartilage integration has been developed which is suitable for further study of tissue integration.
78

Integration of Tissue-engineered Cartilage – An In Vitro Model

Theodoropoulos, John 27 November 2012 (has links)
The ability of articular cartilage to self-repair after injury is limited due to the nature of the tissue. Biological repair is a promising treatment for cartilage injuries but success is limited by the ability to integrate with native cartilage. An in vitro model can be developed to investigate factors that regulate cartilage repair. A tissue engineered cartilage construct was placed into a host bovine osteochondral explant and cultured for 4 and 8 weeks. This same construct was cultured under stimulated and unstimulated conditions for 2 and 4 weeks. Autologous osteochondral implants served as controls. Integration was evaluated histologically, biochemically, biomechanically and for changes in gene expression. The tissue-engineered implants integrated over time whereas the autologous implants did not. Mechanical stimulation and prolonged incubation improved integration between implant and host tissue. An in vitro model of repair-native cartilage integration has been developed which is suitable for further study of tissue integration.
79

Fabrication of a 3-dimensional Cardiac Tissue using a Modular Tissue Engineering Approach

Leung, Brendan Martin Pue-Bun 14 November 2011 (has links)
Implantation of engineered cardiac tissue may restore lost cardiac function to damaged myocardium. We propose that functional cardiac tissue can be fabricated using a modular, vascularized tissue engineering approach developed in our laboratory. In this study, rat aortic endothelial cells (RAEC) were coated onto sub-millimetre size modules embedded with cardiomyocyte-enriched neonatal rat heart cells (CM) and assembled into a contractile, macroporous sheet-like construct. Cell morphologies, contractility and responsiveness to electrical stimulus were examined to evaluate the function of the resulting modular construct. CM embedded modules contracted spontaneously at day 7 post-fabrication and remained viable in vitro at day 14. Modules cultured in 10% bovine serum were more contractile and responsive to external stimulus compared to 10% FBS medium cultured modules. VE-cadherin staining showed a confluent layer of RAEC on CM embedded co-culture modules at day 7. Co-culture modules were also contractilie, but when compared to CM only modules their electrical responsiveness was slightly diminished. Modules assembled into macroporous sheets retained their characteristics at day 10 post-assembly. Micrographs from histological sections revealed the existence of muscle bundles near the perimeter of modules and at inter-module junctions. The fate of modular cardiac tissues in vivo was examined using two implantation strategies based on a syngeneic animal model. Co-culture modules (CM and EC) were either injected into the peri-infarct zone of the heart, or fabricated into a patch form and implanted over a right ventricular free wall defect. In both models, donor EC were involved in the formation of blood vessels-like structures, which appeared to have connected with the host vasculature. Co-culture implants had a higher overall vessel density compared to CM-only implants, but only in the absence of MatrigelTM. Moreover, donor CM organized into striated muscle-like structures, at least when MatrigelTM was removed from the matrix. Together these results suggest that modular cardiac tissue can survive and develop into native-like structures when implanted in vivo and the potential of the modular approach as a platform for building 3-D vascularised cardiac tissue should be explored in greater depth.
80

Fabrication of a 3-dimensional Cardiac Tissue using a Modular Tissue Engineering Approach

Leung, Brendan Martin Pue-Bun 14 November 2011 (has links)
Implantation of engineered cardiac tissue may restore lost cardiac function to damaged myocardium. We propose that functional cardiac tissue can be fabricated using a modular, vascularized tissue engineering approach developed in our laboratory. In this study, rat aortic endothelial cells (RAEC) were coated onto sub-millimetre size modules embedded with cardiomyocyte-enriched neonatal rat heart cells (CM) and assembled into a contractile, macroporous sheet-like construct. Cell morphologies, contractility and responsiveness to electrical stimulus were examined to evaluate the function of the resulting modular construct. CM embedded modules contracted spontaneously at day 7 post-fabrication and remained viable in vitro at day 14. Modules cultured in 10% bovine serum were more contractile and responsive to external stimulus compared to 10% FBS medium cultured modules. VE-cadherin staining showed a confluent layer of RAEC on CM embedded co-culture modules at day 7. Co-culture modules were also contractilie, but when compared to CM only modules their electrical responsiveness was slightly diminished. Modules assembled into macroporous sheets retained their characteristics at day 10 post-assembly. Micrographs from histological sections revealed the existence of muscle bundles near the perimeter of modules and at inter-module junctions. The fate of modular cardiac tissues in vivo was examined using two implantation strategies based on a syngeneic animal model. Co-culture modules (CM and EC) were either injected into the peri-infarct zone of the heart, or fabricated into a patch form and implanted over a right ventricular free wall defect. In both models, donor EC were involved in the formation of blood vessels-like structures, which appeared to have connected with the host vasculature. Co-culture implants had a higher overall vessel density compared to CM-only implants, but only in the absence of MatrigelTM. Moreover, donor CM organized into striated muscle-like structures, at least when MatrigelTM was removed from the matrix. Together these results suggest that modular cardiac tissue can survive and develop into native-like structures when implanted in vivo and the potential of the modular approach as a platform for building 3-D vascularised cardiac tissue should be explored in greater depth.

Page generated in 0.09 seconds