• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Titanium processing using selective laser sintering /

Harlan, Nicole Renee, January 1999 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1999. / Vita. Includes bibliographical references (leaves 166-172). Available also in a digital version from Dissertation Abstracts.
2

Phase reactions of the alloy TIMETAL 125 and its thermomechanical treatments

Mutava, Tapiwa David January 2017 (has links)
A thesis submitted to the Faculty of Engineering, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy (Metallurgical Engineering) 2017 / The alloy Ti-2.7Al-5.7Fe-6Mo-6V (wt%), commercially known as Timetal 125, is used as a high strength fastener in aerostructure assemblies. Very little information is available on its properties and processing, and this study investigated its consolidation from low cost elemental powders, to achieve the minimum mechanical properties for use as a high strength fastener. Reactions during alloying and its beta transus were investigated by differential thermal analysis. The α+β phase region was established to lie between 590oC and 800oC by thermal analysis, metallography and XRD. The alloy was consolidated to ~99% theoretical density by semi-centrifugal casting, and spark plasma sintering of the blended powders. Various heat treatments were undertaken, and the microstructures were evaluated by optical and scanning electron microscopy. Tensile properties, hardness and density were measured after each heat treatment, to establish the optimal combination of mechanical properties. The experimental Timetal 125 style alloy was found to be a metastable beta titanium alloy, which could be strengthened by ageing. It had a microstructure consisting of alpha grains with fine beta precipitates in the as-cast condition, while the sintered samples had acicular precipitates and larger grains, due to the unusually long period that was required to sinter the samples. The ultimate tensile strength was >1500MPa, and elongation was ~3% in the as-cast condition, thus failing to conform to the Airbus EN6116 standard’s specification for ultimate tensile strength and elongation for a high strength fastener in the as-cast or sintered condition. After annealing the castings at 900oC for 1 hour, the ultimate tensile strength decreased to ~760MPa, while elongation increased to ~15%, which still did not conform to the Airbus standard, due to the low strength. The alloy was solution-annealed at 900oC, followed by water quenching to retain a fully βTi microstructure. The minimum properties for the Airbus standard were achieved after ageing between 500oC and 590oC for 1 hour, with an ultimate tensile strength of ~1285MPa, and elongation of ~6.3%. The strengthening depended on the amount and morphology of αTi precipitates from ageing. The αTi/βTi ratio increased with increasing temperature and holding time (shown by XRD), up to 590oC where the precipitates progressively transformed to βTi. Extending isothermal holding time coarsened the precipitates, which was deleterious to strength. There was generally a positive correlation between mean grain size and temperature or holding time, although competing transformations suppressed grain growth, particularly after heat treatment close to transformation temperatures. Although grain size had an effect on the strength of the Timetal 125 style alloy, the main mechanism was precipitation hardening by the secondary αTi. Extended ageing resulted in the formation of allotriomorphic alpha titanium, and a corresponding decrease in the ultimate tensile strength. It was not possible to subject the sintered samples to tensile testing, due to their shape. However, the sintered samples were less porous and had higher Vickers’ values than the castings, suggesting they had similar, if not higher tensile strengths. The acicular precipitates in the sintered samples were possibly martensite or omega titanium (ωTi, Pearson symbol hP3 and space group P6/mmm) although they were too fine to be detected by X-ray diffraction and too fine analyse separately by energy dispersive X-ray spectrometry. / MT 2017
3

Combinatorial Assessment of the Influence of Composition and Exposure Time on the Oxidation Behavior and Concurrent Oxygen-induced Phase Transformations of Binary Ti-x Systems

Samimi, Peyman 05 1900 (has links)
The relatively low oxidation resistance and subsequent surface embrittlement have often limited the use of titanium alloys in elevated temperature structural applications. Although extensive effort is spent to investigate the high temperature oxidation performance of titanium alloys, the studies are often constrained to complex technical titanium alloys and neither the mechanisms associated with evolution of the oxide scale nor the effect of oxygen ingress on the microstructure of the base metal are well-understood. In addition lack of systematic oxidation studies across a wider domain of the alloy composition has complicated the determination of composition-mechanism-property relationships. Clearly, it would be ideal to assess the influence of composition and exposure time on the oxidation resistance, independent of experimental variabilities regarding time, temperature and atmosphere as the potential source of error. Such studies might also provide a series of metrics (e.g., hardness, scale, etc) that could be interpreted together and related to the alloy composition. In this thesis a novel combinatorial approach was adopted whereby a series of compositionally graded specimens, (Ti-xMo, Ti-xCr, Ti-xAl and Ti-xW) were prepared using Laser Engineered Net Shaping (LENS™) technology and exposed to still-air at 650 °C. A suite of the state-of-the-art characterization techniques were employed to assess several aspects of the oxidation reaction as a function of local average composition including: the operating oxidation mechanisms; the structure and composition of the oxides; the oxide adherence and porosity; the thickness of the oxide layers; the depth of oxygen ingress; and microstructural evolution of the base material just below the surface but within the oxygen-enriched region. The results showed that for the Ti-Mo, Ti-Al and Ti-W systems a parabolic oxidation rate law is obeyed in the studied composition-time domain while Ti-Cr system experiences a rapid breakaway oxidation regime at low solute concentrations. The only titanium oxide phase present in the scale for all the binary systems was identified as rutile (TiO2) and formation of multiphase oxide scales TiO2+Al2O3 in Ti-Al system and TiO2+TiCr2 in Ti-Cr system was observed. A thermodynamic framework has been used to rationalize the oxygen-induced subsurface microstructural transformations including: homogeneous precipitation of nano-scaled β particles and discontinuous precipitation of +β phases in Ti-Mo and Ti-W system, evolution of TiCr2 intermetallic phase in Ti-Cr system and ordering phase transformation in Ti-Al system.

Page generated in 0.0611 seconds