• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimization of Nanocomposite Membrane for Membrane Distillation

Murugesan, Viyash January 2017 (has links)
In this study, effects of nanoparticles, including 7 nm TiO2, 200 nm TiO2, and hydrophilic and hydrophobic SiO2 with mean diameter in the range of 15–20 nm and their concentration on the membrane properties and vacuum membrane distillation (VMD) performance were evaluated. The effect of membrane thickness and support materials were also investigated. The membranes were characterised extensively in terms of morphology (SEM), water contact angle, water liquid entrance pressure (LEPw), surface roughness, and pore size. While the best nanocomposite membranes with 200 nm TiO2 Nanoparticles(NPs) were obtained at 2% particle concentration, the optimal particle concentration was 5% when 7 nm TiO2 was integrated. Using nanocomposite membrane containing 2 wt% TiO2 – 200 nm nanoparticles, VMD flux of 2.1 kg/m2h and LEPw of 34 PSI was obtained with 99% salt rejection. Furthermore, it was observed that decreasing the membrane thickness would increase the portion of finger-like layer in membrane and reduce the spongy-like layer when hydrophilic nanoparticles were used. Using continuous flow VMD, a flux of 3.1 kg/m2h was obtained with neat PVDF membranes, which was 600% higher than the flux obtained by the static flow VMD with the same membrane at the same temperature and vacuum pressure. The fluxes of both static and flow-cell VMD increased with temperature. Furthermore, it was evident that the continuous flow VMD at 2 LPM yielded 300% or higher flux than static VMD at any given temperature, indicating strong effects of turbulence provided in the flow-cell VMD.
2

Titanium dioxide/ silicon oxycarbide hybrid polymer derived ceramic as high energy & power lithium ion battery anode material

Pahwa, Saksham January 1900 (has links)
Master of Science / Mechanical and Nuclear Engineering / Kevin B. Lease / Gurpreet Singh / Energy has always been one of the most important factors in any type of human or industrial endeavor. Clean energy and alternative energy sources are slowly but steadily replacing fossil fuels, the over-dependence on which have led to many environmental and economic troubles over the past century. The main challenge that needs to be addressed in switching to clean energy is storing it for use in the electrical grid and transportation systems. Lithium ion batteries are currently one of the most promising energy storage devices and tremendous amount of research is being done in high capacity anode and cathode materials, and better electrolytes and battery packs as well, leading to overall high efficiency and capacity energy storage systems. Polymer derived ceramics (PDCs) are a special class of ceramics, usually used in high temperature applications, but some silicon based PDCs have demonstrated good electrochemical properties in lithium ion batteries. The goal of this research is to explore a special hybrid ceramic of titanium dioxide (TiO₂) and silicon oxy carbide (SiOC) ceramic derived from 1,3,5,7 -- tetravinyl -- 1,3,5,7 -- tetramethylcyclotetrasiloxane (TTCS) polymer for use in lithium ion batteries and investigate the source of its properties which might make the ceramic particularly useful in some highly specialized energy storage applications.

Page generated in 0.0547 seconds