• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 332
  • 134
  • 41
  • 34
  • 26
  • 17
  • 12
  • 7
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 712
  • 712
  • 164
  • 127
  • 124
  • 69
  • 65
  • 63
  • 61
  • 60
  • 54
  • 54
  • 52
  • 50
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Ag/TiO[subscript 2] nanocomposites : synthesis, characterizations and applications /

Zhang, Huanjun. January 2009 (has links)
Includes bibliographical references (p. 149-179).
92

Effects of photocatalysis on concrete surfaces

Terpeluk, Alexandra Lee 18 June 2012 (has links)
Highway air pollution is a significant environmental threat that has staggering implications for human health worldwide. Photocatalytic materials have the potential to reduce air pollution levels near major highways using ultraviolet radiation. This project, funded by the Texas Department of Transportation, evaluated photocatalytic efficiency and durability of several commercially-available photocatalytic coatings for use on concrete structures near highways. The research presented in this thesis involved obtaining concrete highway barriers and creating concrete slabs for outdoor testing and laboratory chamber testing. Three commercially-available coatings were applied to the specimens for testing: Keim Soldalit ME paint, TxActive Stucco Cement, and Pureti Clean. Field sites were set up near major highways in Houston and Austin, Texas. Durability and photocatalytic efficiency were regularly monitored at the field sites using ion chromatography and spectrophotometry. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were conducted on samples from each of the specimens taken before and after placement at the field sites in order to understand durability of the photocatalytic materials that were exposed outdoors. SEM results from this research project revealed that the photocatalytic material in the TxActive stucco and Keim paint remained in their original distribution after the exposure period, while the photocatalytic material in the Pureti Clean product appeared to decrease. XRD results remained fundamentally consistent for all coatings. Ion chromatography results showed that TxActive specimens had the highest surface levels of nitrates and nitrites between rainfall events, which indicates photocatalytic activity. Spectrophotometry results revealed a decrease in brightness for the Keim paint-coated specimens and no change or an increase in brightness for the TxActive stucco over time. The spectrophotometry results indicate how many surface contaminants are accumulating on the surface of a specimen, and thereby how efficiently sunlight is reaching the surface and activating the photocatalytic process. Results obtained from this research project may be influential in the selection of a means for reducing highway pollution in Texas. / text
93

THE THERMODYNAMICS OF THE ADSORPTION OF ARGON ON ANATASE

Glossman, Norton, 1935- January 1964 (has links)
No description available.
94

Electron microscopy studies of photo-active TiO₂ nanostructures

Divitini, Giorgio January 2013 (has links)
No description available.
95

Enhanced properties of photocatalytic titania thin films via doping during magnetron sputter deposition

Ratova, Marina January 2013 (has links)
No description available.
96

Exposure to silica during the production of titanium dioxide from beach sand / Maryda Emily Tersia Draai

Draai, Maryda Emily Tersia January 2012 (has links)
Silica is a common silicon dioxide (SiO2) that can be crystalline or non-crystalline (amorphous). Amorphous silica is considered to be less hazardous than crystalline silica. Three dominant crystalline polymorphs exist, with silica quartz being the most common. Exposure to respirable crystalline silica (quartz) causes silicosis, a lung scarring disease. The aim of this study was to identify and quantify the silica exposure in respirable dust personal exposure samples, as well as in representative bulk samples which are large samples taken from the sources of airborne dust obtained from different mining and production plants involved in the production of titanium dioxide from beach sand. This is needed to determine the degree of risk of developing silicosis. Forty five workers employed in different mining and production plants participated in this study. Their eight-hour personal exposure to respirable particulate was determined. Personal respirable dust exposure samples and bulk samples were analyzed for silica by an accredited laboratory by means of X-ray diffraction based on NIOSH method 7500. Silica quartz was detected in personal respirable dust samples and bulk dust samples obtained from the mining and production plants, but amorphous silica was only detected in three personal exposure samples at the Slag plant and in the bulk sample obtained from the Roaster plant. All the silica quartz and amorphous silica concentrations in personal exposure samples were well below their respective exposure limits of 0.1 mg/m3 (quartz) and 3 mg/m3 (amorphous). No significant differences were found between the silica quartz concentrations in personal respirable exposure samples obtained from the mining ponds and the production plants, although a practical significance was found between some mining and production area personal exposure samples. The non-significant differences found between exposure concentrations and a practical significance suggest the necessity of involving a larger sample group in future. Other studies done in non-mining industries showed that some workers were over exposed to respirable silica dust. Compared to these findings the results of the present study showed the opposite, with respirable silica dust levels being below the South African action level and OEL. Further research, involving more samples, spread over a longer period of time, would probably be able to show a clear trend as to how quartz structures and exposure profiles change from the mining to the various production processes. Overexposure to silica quartz anywhere at the mine and production processes is considered unlikely, with the risk of developing silicosis being low. / Thesis (MSc (Occupational Hygiene))--North-West University, Potchefstroom Campus, 2013
97

Exposure to silica during the production of titanium dioxide from beach sand / Maryda Emily Tersia Draai

Draai, Maryda Emily Tersia January 2012 (has links)
Silica is a common silicon dioxide (SiO2) that can be crystalline or non-crystalline (amorphous). Amorphous silica is considered to be less hazardous than crystalline silica. Three dominant crystalline polymorphs exist, with silica quartz being the most common. Exposure to respirable crystalline silica (quartz) causes silicosis, a lung scarring disease. The aim of this study was to identify and quantify the silica exposure in respirable dust personal exposure samples, as well as in representative bulk samples which are large samples taken from the sources of airborne dust obtained from different mining and production plants involved in the production of titanium dioxide from beach sand. This is needed to determine the degree of risk of developing silicosis. Forty five workers employed in different mining and production plants participated in this study. Their eight-hour personal exposure to respirable particulate was determined. Personal respirable dust exposure samples and bulk samples were analyzed for silica by an accredited laboratory by means of X-ray diffraction based on NIOSH method 7500. Silica quartz was detected in personal respirable dust samples and bulk dust samples obtained from the mining and production plants, but amorphous silica was only detected in three personal exposure samples at the Slag plant and in the bulk sample obtained from the Roaster plant. All the silica quartz and amorphous silica concentrations in personal exposure samples were well below their respective exposure limits of 0.1 mg/m3 (quartz) and 3 mg/m3 (amorphous). No significant differences were found between the silica quartz concentrations in personal respirable exposure samples obtained from the mining ponds and the production plants, although a practical significance was found between some mining and production area personal exposure samples. The non-significant differences found between exposure concentrations and a practical significance suggest the necessity of involving a larger sample group in future. Other studies done in non-mining industries showed that some workers were over exposed to respirable silica dust. Compared to these findings the results of the present study showed the opposite, with respirable silica dust levels being below the South African action level and OEL. Further research, involving more samples, spread over a longer period of time, would probably be able to show a clear trend as to how quartz structures and exposure profiles change from the mining to the various production processes. Overexposure to silica quartz anywhere at the mine and production processes is considered unlikely, with the risk of developing silicosis being low. / Thesis (MSc (Occupational Hygiene))--North-West University, Potchefstroom Campus, 2013
98

Binder-free oxide nanotube electrodes for high energy and power density 3D Li-ion microbatteries / Titanbaserade nanotuber för tredimensionella elektoder i litiumjonbatterier

Ihrfors, Charlotte January 2014 (has links)
This thesis covers synthesis and characterisation of TiO2 nanotubes and TiO2 / Li4Ti5O12 composite nanotubes. The aim was to build batteries with high areal capacity and good rate capability. TiO2 nanotubes were synthesized by two step anodization of titanium metal foil and the composite electrodes were synthesized through electrochemical lithiation of TiO2 nanotubes. To improve the battery performance the TiO2 nanotubes were annealed at 350 °C in air atmosphere, while the composite electrodes were annealed in argon at 550 °C. The longest TiO2 nanotubes were measured to 42.5 μm. The 40 μm long nanotubes displayed an areal capacity of 1.0 mAh/cm2 and a gravimetric capacity of 89 mAh/g. Nanotubes having a length of 10 μm had an areal capacity of 0.33 mAh/cm2 and a gravimetriccapacity of 130 mAh/g. When cycled at high rates, 10C, the capacity of the 40 μm nanotubes was 0.25 mAh/cm2, using a current density of 9.3 mA. The capacity of the 40 μm long nanotubes were higher than for the 10 μm long, but the increase was not proportional to the increase in length. A composite electrode was successfully synthesized and was found to have a capacity of 0.25 mAh/cm2 at a rate of C/5.
99

Investigation of the Formation and Photo-activity of Titanium Dioxide and Polyelectrolytes

McAuley, Scott 12 January 2011 (has links)
Anatase titanium dioxide was synthesized using a hydrothermal treatment of bis(ammonium lactato) titanium dihydroxide (ALT) under a variety conditions. Heating the precursor produces highly crystalline particles that do not undergo a crystal phase transition upon calcination; however, it does remove a layer of surface adsorbed lactate. Three titanium-polyelectrolyte composites (PAA, PAH, and PEI) were formed through electrostatic polymer chain collapse. In order to gain a measure of the relative photo-activity of these various samples the interaction and de-colouration of methylene blue (MB) was investigated. The composite particles were not active whereas the non-composite titanium dioxide and solution phase PAA were individually active. MB was found to form dimers with anionic PAA through electrostatic interaction; however, there was no difference in the de-colouration rate of these dimers versus the monomers. Finally, it was found that pre-irradiating the polyelectrolyte prior to combining with MB decreases the de-colouration rate.
100

Investigation of the Formation and Photo-activity of Titanium Dioxide and Polyelectrolytes

McAuley, Scott 12 January 2011 (has links)
Anatase titanium dioxide was synthesized using a hydrothermal treatment of bis(ammonium lactato) titanium dihydroxide (ALT) under a variety conditions. Heating the precursor produces highly crystalline particles that do not undergo a crystal phase transition upon calcination; however, it does remove a layer of surface adsorbed lactate. Three titanium-polyelectrolyte composites (PAA, PAH, and PEI) were formed through electrostatic polymer chain collapse. In order to gain a measure of the relative photo-activity of these various samples the interaction and de-colouration of methylene blue (MB) was investigated. The composite particles were not active whereas the non-composite titanium dioxide and solution phase PAA were individually active. MB was found to form dimers with anionic PAA through electrostatic interaction; however, there was no difference in the de-colouration rate of these dimers versus the monomers. Finally, it was found that pre-irradiating the polyelectrolyte prior to combining with MB decreases the de-colouration rate.

Page generated in 0.064 seconds