• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 333
  • 134
  • 41
  • 34
  • 26
  • 17
  • 12
  • 7
  • 5
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 715
  • 715
  • 164
  • 127
  • 124
  • 69
  • 65
  • 63
  • 61
  • 60
  • 54
  • 54
  • 52
  • 51
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Development of a visible light active, photo-catalytic and antimicrobial nanocomposite of titanium dioxide and silicon dioxide for water treatment

Mungondori, Henry Heroe January 2012 (has links)
The aim of this study was to prepare composite materials based on titanium dioxide (TiO2) and silicon dioxide (SiO2), and to evaluate their photo-catalytic and antimicrobial properties. Carbon and nitrogen doped TiO2nano-particles were prepared via a sol gel synthesis, which is a simple hydrolysis and condensation technique. In situ doping was carried out using glucose and urea as carbon and nitrogen sources respectively. Doping increased the spectral response of titanium dioxide photo-catalyst, allowing it to utilise the visible region which is much wider than the UV region (about 40 % of the solar spectrum), thus making it a more efficient photo-catalyst. The carbon and nitrogen doped TiO2-SiO2nano-particles were immobilized on glass support material to allow for easy separation of the spent photo-catalyst after the photo-degradation process. Tetraethyl orthosilicate (TEOS) was employed as both a binder and precursor for silicon dioxide. A mixture of TiO2 and TEOS in a 1:1 ratio was allowed to polymerize on a glass support which had been treated with hydrofluoric acid to introduce OH groups. The prepared photo-catalytic material was characterized by FT-IR, XRD, DRS, TEM, EDX, and BET analyses. Carbon was found to be more effective as a dopant than nitrogen. It brought about a band gap reduction of 0.30 eV and a BET surface area of 95.4 m2g-1 on the photo-catalyst as compared to a gap reduction of 0.2 eV and surface area of 52.2 m2g-1 for nitrogen doped TiO2. On the other hand, introduction of SiO2 allowed utilization of visible light by the TiO2-SiO2 nano-composite leading to an improved rate of photo-degradation of both methyl orange and phenol red. However, the immobilization of TiO2 on support material made it less effective towards inactivation of E. coli ATCC 25922 bacterial cells when compared to powdered TiO2 which was able to inactivate about 98 % of the bacterial cells within an hour of treatment.
222

Fluidised-bed chlorination of titania slag

Le Roux, J.T.F. (Johannes Theodorus Ferreira) 19 July 2006 (has links)
Please read the abstract in the section 00front of this document / Dissertation (M Eng (Industrial Engineering))--University of Pretoria, 2006. / Industrial and Systems Engineering / unrestricted
223

Mechanical properties and self-cleaning mortar capacity C/A 1: 5 of Portland cement modified with titanium dioxide (TiO2)

Flores, H., Flores, H., Bernuy, G., Huerta, C. 28 February 2020 (has links)
The deterioration of the surfaces of the constructions made with mortar C/A 1: 5 of Portland cement, are produced by being exposed to the emission of toxic gases emanating from the growing automobile fleet, this problem causes alternatives to be sought in order to counteract its effect on buildings and the environment. A new method to deal this problem is the incorporation of the titanium dioxide photocatalyst (TiO2) into the Portland cement mortar, which can develop self-cleaning and air purification properties to be in contact with sunlight. This work seeks to introduce this organic component to the Portland cement mortar, used for the facade charging and structural elements, for this purpose, different percentages (5%, 7.5% and 10%) of titanium dioxide (TiO2) are added and the properties of the modified mortars making use of [1] compression tests, [2] fluidity tests, [3] absorption tests and [4] photocatalytic activity tests with which the self-cleaning capacity was verified. This study concludes that the best percentage of titanium dioxide addition is 5%, with which the Portland cement mortar is granted self-cleaning property without substantially damaging its mechanical properties.
224

Simple Photochemical Reduction of Carbon Dioxide to Formate

Omadoko, Ovuokenye 12 April 2019 (has links)
Simple Photochemical Reduction of Carbon Dioxide to Formate Ovuokenye Omadoko, Department of Chemistry, East Tennessee State University, Johnson City, Tennessee. There is a need to develop techniques for conversion of carbon dioxide to other useful products such as methanol, formaldehyde, formic acid, formate, methane, and hydrocarbons. Carbon dioxide can be converted into these products using different methods such as photochemical, electrochemical, thermochemical and hydrogenation by bacteria. Formate is of interest due to having wide industrial applications which include use in direct liquid fuel cells (DLFC’s), an additive in pyrolysis vapors, precursor for biological fuels, and is a key intermediate in methanogenesis breaking down complex organic compounds. In this work, conversion of carbon dioxide to formate was accomplished photochemically. The concentration of formate obtained was quantified using ion chromatography. The yield of formate, based on the amount of carbon dioxide in solution, was 1.54%, while the quantum yield near 1.0%. Detailed studies of the photoreduction process showed that amount of sensitizer, light intensity and pH affect the amount of formate generated.
225

The effects of titanium oxide nanoparticles on cultured cells and the immune system

Esterhuizen, Bevan Peter January 2021 (has links)
>Magister Scientiae - MSc / Engineered nanomaterials derived from various bulk materials are being developed in ever larger quantities and with very diverse chemical compositions. The physical and chemical properties of the smaller nanoparticles are very different compared to their larger bulk chemicals. Titanium dioxide nanoparticles (TiO2NPs) are an example of such an engineered nanomaterial. Titanium dioxide nanoparticles are mainly used as a pigment in many applications such as glazes, enamels, plastics, pharmaceuticals, cosmetics, and it is widely used in sunscreens. Human exposure to TiO2NPs can occur both during manufacturing and use.
226

Účinnost separace vodních polutantů na poloprovozním fotoreaktoru / Separation efficiency of water pollutants on pilot plant photoreactor

Melicher, Daniel January 2019 (has links)
The thesis deals with photocatalysis of organic pollutants on UV-activated anatase particles, on UV-activated anatase particles with hydrogen peroxide and hydrogen peroxide itself. The measurement is carried out on a pilot plant UV photoreactor. The aim of the thesis is to determine the effectiveness of azo dyes and antibiotics degradation. The level of azo dyes and antibiotics degradation is measured by UV-VIS spectrometry.
227

Fotokatalytická aktivita tištěných vrstev oxidu titaničitého / Photocatalytic Activity of Titanium Dioxide Printed Layers

Novotná, Michaela January 2009 (has links)
This diploma thesis was focused on the preparation of self-cleaning and photocatalyticaly active titanium dioxide thin films. Transparent and porous thin layers of titanium dioxide were prepared from sol-gel containing titanium tetraisopropoxide (TTIP) as precursor with addition polyethylene glycol (PEG). Transparent thin layers of titanium dioxide were also prepared from colloidal solution titanium dioxide. The immobilization of thin titanium dioxide layers was performed by a sol-gel process on the soda lime glasses. Diffusion of sodium cation from soda lime glasses into titanium dioxide layer were blocked. Sol was deposited by printig method – micropiezo deposition. Sol and thin titanium dioxide layers were characterised by the physical-chemical method. For prepared sol viscosity, density and surface tension were measured. Thickness and hydrophilicity of titanium dioxide layers also were studied. The photocatalytic activity of the printed titanium layers were tested via the photocatalytic degradation of the 2,6-dichlorindophenol. The influence of addition PEG into the sol and influence of sol loading was studied. It was found that the addition of PEG into the sol significantly increased the photocatalytic activity of titanium dioxide layers.
228

Využití fluorescenčních sond pro sledování aktivity imobilizovaných fotokalyzátorů / Fluorescence probes for immobilized photocatalyst activity monitoring

Blašková, Martina January 2015 (has links)
This diploma thesis deals with the use of fluorescent probes for evaluation of photocatalytic activity of immobilized photocatalyst. To the evaluation of photocatalytic activity of TiO2 were used three different fluorescent probes – terephthalic acid, coumarin and benzoic acid, wherein was monitored the increasing intensity of fluorescence of their oxidation products – hydroxyterephthalic acid, 7-hydroxycoumarin and salicylic acid for the photochemical degradation of various fluorescent probes. To the evaluation of photocatalytic activity was used solid phase (photocatalyst) – liquid phase (probe) system and was used three sources of radiation. Fluorescence of oxidation products was monitored by the fiber spectrometer and a conventional cuvette fluorometer.
229

Příprava tenkých vrstev oxidů titanu / Electrodeposition of thin layers TiO2

Jakubis, Ivan January 2011 (has links)
This work deals with issues of electrochromism and making active electrochromic film of titanium dioxide. By using various precursors consisting titanium element active film was electrodeposited on glass substrates covered with transparent conductive thin-film In2O3:Sn (ITO). Electrochromic characteristics of these substrates that were electrodeposited for different times and with different voltage have been studied. Than there has been studied the impact of various annealing temperatures on electrochromic characteristics.
230

Experimental and numerical investigation into the natural convection of TiO2-water nanofluid

Ottermann, Tanja Linda January 2016 (has links)
This Master of Engineering investigation focuses on the natural convection of nanofluids in rectangular cavities. The governing equations applied to analyse the heat transfer and fluid flow occurring within the cavity are given and discussed. Special attention is given to the models that were developed to predict the thermal conductivity and dynamic viscosity of such nanofluids. A review concerning past investigations into the field of natural convection of nanofluids in cavities is made. The investigation is divided into experimental works and computational fluid dynamics (CFD) numerical investigations. Through the literature review, it was discovered that many numerical models exist for the prediction of the thermophysical properties of nanofluids, specifically thermal conductivity and viscosity. Depending on the nanofluid and the application, different models can be used. The literature study also revealed that most previous works were done in the CFD field. Very few experimental studies have been performed. Numerical CFD investigations, however, need experimental results for validation purposes, leading to the conclusion that more experimental work is needed. The heat transfer capability and thermophysical properties of the nanofluid are investigated based on models found in literature. The investigation incudes measuring the heat transfer inside a cavity filled with a nanofluid and subjected to a temperature gradient. The experiment is performed for several volume fractions of particles. An optimum volume fraction of 0.005 is obtained. At this volume fraction the heat transfer enhancement reaches a maximum for the present investigation. The investigation is repeated as a numerical investigation using the commercially available CFD software ANSYS-FLUENT. The same case as used in the experimental investigation is modelled as a two-dimensional case and the results are compared. The same optimum volume fraction and maximum heat transfer is obtained with an insignificantly small difference between the two methods of investigation. This error can be attributed to the minor heat losses experienced from the experimental setup as in the CFD adiabatic walls considered. It is concluded that, through the inclusion of TiO2 particles in the base fluid (deionised water), the thermophysical properties and the heat transfer capability of the fluid are altered. For a volume fraction of 0.005 and heat transfer at a temperature difference of 50 °C, the heat transferred through the fluid in the cavity is increased by more than 8%. From the results, it is recommended that the investigation is repeated with TiO2 particles of a different size to determine the dependency of the heat transfer increase on the particle size. Various materials should also be tested to determine the effect that material type has on the heat transfer increase. / Dissertation (MEng)--University of Pretoria, 2016. / Mechanical and Aeronautical Engineering / MEng / Unrestricted

Page generated in 0.0616 seconds