• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Variations on Artin's Primitive Root Conjecture

FELIX, ADAM TYLER 11 August 2011 (has links)
Let $a \in \mathbb{Z}$ be a non-zero integer. Let $p$ be a prime such that $p \nmid a$. Define the index of $a$ modulo $p$, denoted $i_{a}(p)$, to be the integer $i_{a}(p) := [(\mathbb{Z}/p\mathbb{Z})^{\ast}:\langle a \bmod{p} \rangle]$. Let $N_{a}(x) := \#\{p \le x:i_{a}(p)=1\}$. In 1927, Emil Artin conjectured that \begin{equation*} N_{a}(x) \sim A(a)\pi(x) \end{equation*} where $A(a)>0$ is a constant dependent only on $a$ and $\pi(x):=\{p \le x: p\text{ prime}\}$. Rewrite $N_{a}(x)$ as follows: \begin{equation*} N_{a}(x) = \sum_{p \le x} f(i_{a}(p)), \end{equation*} where $f:\mathbb{N} \to \mathbb{C}$ with $f(1)=1$ and $f(n)=0$ for all $n \ge 2$.\\ \indent We examine which other functions $f:\mathbb{N} \to \mathbb{C}$ will give us formul\ae \begin{equation*} \sum_{p \le x} f(i_{a}(p)) \sim c_{a}\pi(x), \end{equation*} where $c_{a}$ is a constant dependent only on $a$.\\ \indent Define $\omega(n) := \#\{p|n:p \text{ prime}\}$, $\Omega(n) := \#\{d|n:d \text{ is a prime power}\}$ and $d(n):=\{d|n:d \in \mathbb{N}\}$. We will prove \begin{align*} \sum_{p \le x} (\log(i_{a}(p)))^{\alpha} &= c_{a}\pi(x)+O\left(\frac{x}{(\log x)^{2-\alpha-\varepsilon}}\right) \\ \sum_{p \le x} \omega(i_{a}(p)) &= c_{a}^{\prime}\pi(x)+O\left(\frac{x\log \log x}{(\log x)^{2}}\right) \\ \sum_{p \le x} \Omega(i_{a}(p)) &= c_{a}^{\prime\prime}\pi(x)+O\left(\frac{x\log \log x}{(\log x)^{2}}\right) \end{align*} and \begin{equation*} \sum_{p \le x} d(i_{a}) = c_{a}^{\prime\prime\prime}\pi(x)+O\left(\frac{x}{(\log x)^{2-\varepsilon}}\right) \end{equation*} for all $\varepsilon > 0$.\\ \indent We also extend these results to finitely-generated subgroups of $\mathbb{Q}^{\ast}$ and $E(\mathbb{Q})$ where $E$ is an elliptic curve defined over $\mathbb{Q}$. / Thesis (Ph.D, Mathematics & Statistics) -- Queen's University, 2011-08-03 10:45:47.408

Page generated in 0.0786 seconds