• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 867
  • 240
  • 6
  • 5
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 2550
  • 1718
  • 1706
  • 1577
  • 1574
  • 380
  • 379
  • 340
  • 335
  • 225
  • 223
  • 223
  • 217
  • 211
  • 209
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of CMOS analog integrated circuits as readout electronics for High-Tc superconductor and semiconductor terahertz bolometric sensors

Michal, Vratislav 10 June 2009 (has links)
This PhD thesis deals with the design of a CMOS integrated circuit as a readout electronic for the THz bolometric detectors, either semiconductor or high-Tc superconductor. We study a chain of the analog signal processing composed of the differential fixed-gain amplifier for the temperature range of 40 to 400K, as well as of the high dynamic range low-pass active frequency filter. As the optimal amplifier configuration, a feedback-free architecture was selected in order to reach high frequency bandwidth (17MHz for gain 40dB), low quiescent current (Iq=2mA) and high input impedance. In this amplifier, the gain is set in the CMOS structure via two different methods and the accuracy is verified by wide-temperature measurements of the fabricated integrated circuit. Consequently, the behaviour of the frequency filters is examined namely in the stopband, aiming to increase the maximal cut-off frequency. As an outcome, two structures with low influence of real active elements' parameters are designed: improved type-II Sallen-Key and the structure based on the CCII- current conveyor. In the last part, the integrated CCII- with very low output impedance is presented.
2

Polynomial Based Design of Linear Phase Recursive and Non Recursive Filters

Kumar, Vinay 20 March 2009 (has links)
In this dissertation, several algorithms to design linear phase Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters have been discussed.Contrary to various already existing standard algorithms,the proposed methods approximate magnitude and phase characteristics simultaneously. The basic mechanism used in this study is polynomial based design of digital filters. We have used several already existing polynomials; e.g., Chebyshev polynomials, Legendre polynomials, to develop linear phase digital filters and developed some two dimensional polynomials following orthogonal properties to design digital filters for image processing, their design methodology have also been discussed.Filters of proposed type can be used for applications where exact linear phase is required. Another application of this type of filters is the design of filters with zero group delay. IIR filters are designed with absolute linear phase and zero group delay. The algorithms proposed in the present thesis allow user to design filters with his set of constraints, which is required in practical filter design problems. Very narrow band 1D and 2D linear phase FIR filters can easily be designed by the proposed methodology. The IIR filters proposed provide the guarantee to result in a stable filter.All the algorithms have been discussed stepwise to make sure that any one with basic programming capability can easily design them. We have not used any standard routine of any particular platform, therefore any freely available programming platform (like C, C++, Scilab, Octave, etc.) can be used to design these filters.
3

Thymidine kinase activities in white blood cells and serum in cancer patients

O'Neill, K. L. January 1986 (has links)
No description available.
4

Mise en oeuvre et validation de la méthode des réponses en fréquence à l'arrêt - Standstill Frequency Response (SSFR) - pour trois générateurs synchrones

Rakotovololona, Stéphanie 23 April 2018 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdorales, 2015-2016 / Ce mémoire présente une application de la méthode des réponses en fréquence à l’arrêt ou Standstill Frequency Response (SSFR) pour trois machines synchrones distinctes : une machine de laboratoire de 5.4kVA à rotor lisse, du type turbogénérateur, une machine de laboratoire de 5.4kVA à rotor saillant, du type hydrogénérateur et un grand alternateur de réseau de 95 MVA, du type hydrogénérateur. Cette méthode est détaillée dans la norme IEEE 115-2009 et permet l’identification des paramètres d’un circuit équivalent dq pour des alternateurs synchrones. Ces modèles sont souvent utilisés pour des études de stabilité du réseau électrique. Nous avons adapté l’utilisation de la méthode SFFR pour chaque machine en essayant de réduire le nombre de mesures à réaliser dans le domaine des basses fréquences. Cette modification permet de minimiser la durée des expériences. Une bonne partie du mémoire rappelle les bases théoriques nécessaires à l’utilisation de la méthode SSFR, notamment le développement du modèle dq, la transformation de Park et les différentes fonctions de transfert qui représentent le comportement d’une machine. Par la suite, nous décrivons le protocole expérimental et l’analyse des données pour l’identification des paramètres du modèle pour chaque alternateur. Une validation des paramètres est réalisée en comparant les données expérimentales et les résultats simulés pour plusieurs essais de courts-circuits (triphasés et biphasés), à différents niveaux de courant d’excitation. / This paper presents an application of the well-known Standstill Frequency Response (SSFR) method for three separate synchronous machines: a 5.4kVA round rotor turbogenerator, a 5.4 kVA salient rotor and a large 95 MVA hydrogenerator. This method is detailed in the IEEE 115-2009 standard and allows the identification of the parameters of an equivalent circuit for dq synchronous generators. These models are often used for the grid stability studies. We adapted the SSFR method for each machine in order to reduce the number of measurements to be performed in the low frequency range. This modification reduces the duration of the experiments. The theoretical basis for the use of SSFR method is reviewed carefully, including the development of dq model, Park transformation and different transfer functions that represent the behavior of a machine. Subsequently, we describe the experimental protocol and data analysis for the identification of the model parameters for each generator. A parameter validation is performed by comparing the experimental and simulated results of several short-circuit tests (three-phase and two-phase), at different levels of excitation current.
5

Monolithic high power mode locked GaAs/AlGaAs quantum well lasers

Tandoi, Giuseppe January 2011 (has links)
In this thesis, approaches for increasing the output power in monolithically integrated semiconductor mode locked (ML) lasers were investigated. The wavelength range considered is the range of operation of low temperature grown GaAs photomixers, devices commonly used for THz generation. In particular, two GaAs/AlGaAs quantum well laser epistructures (operating at 830 nm and 795 nm) were considered, both with reduced optical confinement and elongated vertical optical mode size. In this work, such laser epistructures, commonly used by high power semiconductor laser manufacturers, were successfully employed, for the first time, for producing passively ML devices. Improved average powers (up to 48 mW) under ML operation were demonstrated, around ten times higher than values previously reported in monolithic GaAs/AlGaAs ML lasers. In continuous wave operation, the output power was limited by the catastrophic damage of the laser facets at around 50 mW. For this reason, facet passivation techniques were investigated, allowing for powers up to 124 mW to be achieved. In ML regime, the output power was instead limited by the catastrophic damage of the reverse biased section of the laser. This failure mechanism was investigated and explained considering thermal effects on the reverse biased section. Such effects limited the output power to around 27 mW in 830 nm devices, which was then improved by 70% in 795 nm devices with a 70% larger optical mode area. The larger mode size, combined to a small duty-cycle laser geometry, enabled a record peak power of 9.8 W to be achieved at 6.83 GHz. This particular repetition rate was specifically designed for coherent population trapping experiments in 87Rb vapors. Sub-picosecond transform limited pulses were achieved in both the laser materials considered, with a minimum duration of 0.43 ps at 126 GHz. With the values of peak power achieved, the developed devices may also be directly used for two-photon microscopy applications.
6

A novel electric power quality monitoring system for transient analysis

Chan Yau Chung, John January 2014 (has links)
Electricity is vital for our daily life in modern cites. In order to ensure its reliability and supply, an electric power monitoring system is indispensable in an electric power system. Currently, most electric power monitoring systems are designed for steady-state monitoring only. They may not be able to monitor instantaneous power disturbances, such as voltage surge, happened in electric power systems. In fact, instantaneous power disturbances are frequently found in electric power systems, which result in equipment failures and cause financial losses. Therefore, a novel electric power monitoring system is proposed in this thesis. Besides traditional functions, the proposed system is capable of monitoring and analyzing instantaneous power disturbances in electric power systems. Novelties of the proposed monitoring system are in the following three major aspects. Firstly, the proposed system is capable of monitoring instantaneous power disturbances. Unlike traditional monitoring systems, the proposed system captures not only statistical power quantities (e.g. kW, kWh), but also voltage and current waveforms. Since a considerable communication network bandwidth is required to transmit electric waveforms in a remote monitoring system, a novel waveform compression algorithm is proposed to realize real-time electric power waveform monitoring on low-speed communication networks (e.g. Zigbee). Secondly, the proposed system is capable of identifying various kinds of power disturbances automatically. It relieves electrical engineers from manned disturbance identification on preserved waveforms. Unlike traditional disturbance identification algorithms, the proposed system can identify not only voltage disturbances, but also current disturbances. Hence, it can provide a better chance in identifying more problems and disturbances in electric power systems. Thirdly, a novel time-frequency analysis method is proposed to analyze preserved waveforms. The proposed method is an improvement to the well-known Discrete Wavelet Packet Transform (DWPT). DWPT has been used by researchers and engineers to analyze disturbances and harmonics in electric power systems. However, DWPT is subjected to a non-uniform leakage problem, which has been discussed intensively in many studies. In order to tackle this issue, a frequency shifting scheme is introduced in the proposed method. A prototype has been implemented to demonstrate the feasibility of the proposed electric power monitoring system. There are two major components – a prototype meter and a central monitoring system. The performance of the prototype has been evaluated by conducting experiments and field tests. The capability of the proposed system for realtime remote monitoring has been verified on Zigbee network, which is a low-power, low speed wireless communication network.
7

Investigation of metal nanomaterials as a sensing element in LSPR-based optical fibre sensor development

Tu, Minh Hieu January 2014 (has links)
This thesis aims to explore and demonstrate the potential of using optical fibres both as a waveguide material and a transducer for wide sensing applications, based on a comprehensive review of the localised surface plasmon resonance (LSPR) phenomenon, which occurs at a nanoscale level when light interacts with metallic nanoparticles at a resonance wavelength. The LSPR effect of metallic nanomaterials has shown a strong dependence on the local surrounding environment. A small change for example in the refractive index or in the solution concentration can result in a variation in the LSPR spectrum. Based on this underpinning sensing mechanism, a portable system using an optical fibre coated with gold nanoparticles (AuNPs) as a sensing probe has been developed and tested for the refractive index measurement. Coupled with this, a systematic approach has been developed and applied in this work to optimize the performance of the developed system by considering several key factors, such as the size of nanoparticles produced, pH, coating time and coating temperature. The above optimised probes coated with gold-nanoparticles are further cross-compared with those optimized but coated with gold nanorods with a high aspect ratio. Both types of probes are also prepared for a specific biosensing application based on the antibody-antigen interaction to create wavelength-based sensors for the detection of anti-human IgG. Both probes have exhibited excellent refractive index (RI) sensitivity, showing ~914 nm/RIU (refractive index unit) for the probe coated with gold nanoparticles and ~601 nm/RIU for the one coated with gold nanorods. When using the modified probes for the detection of anti-human IgG, both probes are able to achieve a good LOD (limit of detection) at 1.6 nM. Based on the above cross-comparison, further research has been undertaken to explore the potential of nanoparticles of the alloy of gold and silver, with an aim to combine the robustness of gold and the excellent LSPR effect of silver. To do so, various alloy particles with varied gold/silver ratio and sizes have been prepared and tested for their respective refractive index sensitivities. The probe coated with alloy particles with bigger size and higher silver content has shown better performance in RI sensing. The work has shown a clear relationship between the size of alloys, the content ratio of alloys and RI sensitivity. Research has also been undertaken in this thesis to explore the excellent LSPR effect of hollow nanoparticles resulting from the enhanced coupling between the interior and exterior of the hollow particles. Gold hollow nanocages have been successfully synthesised and tested with different hollowness and a LSPR sensor coated with gold nanocages has shown an excellent sensitivity as high as ~1933 nm/RIU, which is more than 3 times higher than that coated with AuNPs. This result has confirmed that a significant improvement in sensitivity can be made possible for further biosensing as well as chemical sensing applications.
8

Optimization of silicon photonic devices for polarization diversity applications

Soudi, Sasan January 2015 (has links)
This thesis discusses two important designs, analysis and optimization of polarization-based devices such as polarization rotator and splitter. Many optical sub-systems integrate with guided wave photonic devices with two-dimensional confinement and high contrast between the core and cladding. The modes present in such waveguides are not purely of the TE or TM type. They are hybrid in nature, where all six components of the magnetic and electric fields are present. This causes the system fully to be polarization dependent. Currently, the polarization issue is a major topic to be dealt with during the design of high efficiency optoelectronic subsystems for further enhancement of their performances. To characterize the device polarization properties a vectrorial approach is needed. In this work, the numerical analysis has been carried out by using the powerful and versatile full vectorial H-field based finite element method (FEM). This method has been proved to be one of the most accurate numerical methods to date for calculating the modal hybridness, birefringence and consequently to calculate the device length, which is an important parameter when designing devices concerning the polarization issues. Polarization devices may be fabricated by combining several butt-coupled uniform waveguide sections. The Least Squares Boundary Residual (LSBR) method is used to obtain transmission and reflection coefficients of all the polarized modes by considering both the guided and the radiated modes. On the other hand, finite element method cannot calculate the power transfer efficiency directly, hence the LSBR method is used along with the FEM for this purpose. The LSBR method is rigorously convergent, satisfying the boundary conditions in the least square sense over the discontinuity interface. Using this method, the power transfer from the input to the coupler section and at the output ports can be evaluated. When designing polarization rotators, it is necessary to calculate the modal hybridness of a mode. In this research, it is identified that when the symmetric waveguides are broken, the modal hybridity is enhanced, and thereby a high polarization conversion is expected. This work is devoted to the study of design optimization of a compact silicon nanowire polarization device. An interesting and useful comparison is made on their operating properties such as the crosstalk, device length, polarization dependence, and fabrication tolerances of the polarization in directional coupler based devices. In this study initially the H-field modal field profile for a high index contrast silicon nanowire waveguide is shown. The effects of waveguide’s width on the effective indices, hybridness, power confinement in the core, and the cladding have been investigated. The modal birefringence of such silicon nanowire waveguides also is shown. It is presented here that for a silicon nanowire waveguide with height of 220 nm, fundamental and second modes exist in the region of the width being 150 – 300 nm, and 500 – 600 nm, respectively. A compact 52.8 μm long passive polarization rotator (PR) using simple silicon nanowire waveguides is designed with a power transfer of 99 % from input TE to output TM power mode, with cross-talk better than – 20 dB and loss value lower than 0.1 dB. Furthermore, an extensive study of fabrication tolerances of a compact (PR) is undertaken. The design of an ultra-compact polarization splitter (PS) based on silicon-on-insulator (SOI) platform is presented. It is shown here that a low loss, 17.90 μm long compact PS, and wide bandwidth over the entire C-band can be achieved.
9

Design of a 2D MRI compatible robot for performing prostate cancer treatment using therapeutic ultrasound

Yiallouras, Christos January 2015 (has links)
Therapeutic ultrasound is a promising treatment method for many common cancers, including prostate cancer. Magnetic resonance image (MRI) guidance of therapeutic ultrasound permits targeting and monitoring of therapy. In this thesis a prototype MRI compatible positioning device for the treatment of prostate cancer using therapeutic ultrasound is presented. The accuracy, MRI compatibility and functionality of the positioning device was evaluated in in vitro experiments (using gel phantoms and in vitro). The MRI was used as the imaging guidance technique. The proposed device incorporates a portable electronic system and operates in two PC controlled stages, linear and angular (X - Θ) and one manual driven stage Z (height of the probe). The device is small and portable and can be placed on the patient’s table to any commercial MRI scanner. The proposed device was tested on two clinical MRI scanners of different manufacturers. Additionally, in this thesis a software that controls an MRI guided focus ultrasound system is presented. The software was written in C sharp and consists of the following options: a) connection with DAQ device, b) tab that controls 2D device, c) tab that controls 3D device, d) tab that controls ultrasound protocol and e) operation command history list, g) MRI compatible camera, h) open and control the DICOM images captured from the MRI scanner during the therapy, i) temperature reading of the HIFU focal point. The proposed positioning device offers approximately 20μm accuracy on linear and angular stages. It incorporates MRI compatible optical encoders as mechanical motion feedback. The accuracy measurements were taken using a digital calibre. The positioning device has range of 111mm in linear stage, ±90o on angular stage and 50mm on Z stage. The design was based on measurements that were taken by a 100 patients. The MRI compatibility and motion accuracy images were taken by scanning gel phantoms using T2W FSE on 1.5T and 3T MRI scanner.
10

Finite element time domain method with a unique coupled mesh system for electromagnetics and photonics

Kabir, S. M. Raiyan January 2015 (has links)
The finite difference time domain (FDTD) method is a popular technique, being used successfully to analyse the electromagnetic properties of many structures, including a range of optical or photonic devices. This method offers several major advantages such as, a minimum level of calculation is required for each of the cells into which the structure is divided, as well as data parallelism and explicit and easy implementation. However, due to the use of the Finite Difference grid, this method suffers from higher numerical dispersion and inaccurate discretisation due to staircasing at slanted and curve edges. The rectangular computational domain in 2D and cuboid computational domain in 3D sometimes makes the method very resource intensive especially for large simulations. Although the finite element (FE) approach is superior for the discretisation of both 2D and 3D structures, most of the FE-based time domain approaches reported so far suffer from limitations due to the implicit or iterative form or the mass matrix formulation, for example. Therefore, the speed of the simulation is much slower than the FDTD method. Time domain analysis of electromagnetic is a very resource intensive numerical technique. Due to the slow performance the FE based techniques are not as popular as the FDTD method. In this research work a new FE based time domain technique has been proposed for both 2D and 3D problems which is similar to the FDTD method explicit and data parallel in nature. The method proposed does not requires any matrix formulation or iteration. It uses minimum possible CPU cycles among any FE-based techniques. The method also utilises a unique meshing scheme to reduce the number of calculation to at least half for 2D and one fifth for 3D compared to any full mesh FE based technique. The method also shows very low numerical dispersion when used with equilateral elements in both 2D and 3D. Thus the proposed method effectively produces results with less numerical dispersion error with lower density mesh compared to the FDTD method. When the advantage in resolution is taken into consideration, calculation of each time-step using the proposed method is significantly faster than the FDTD method.

Page generated in 0.0259 seconds