• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • Tagged with
  • 22
  • 21
  • 15
  • 11
  • 11
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

iNET System Design Concepts

Abbott, Ben A., Araujo, Maria S., Moodie, Myron L., Newton, Todd A., Grace, Thomas B. 10 1900 (has links)
ITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevada / One of the core philosophies of the integrated Network Enhanced Telemetry (iNET) project is to leverage standard networking technologies whenever possible to both reduce development cost and to allow standard networking applications to function. This paper presents decisions about the system's behavioral design and other decisions affecting the selection and design of system components. The TmNS is a network of networks that must be integrated into existing range processes. An overall guiding tenet for the TmNS is enhancement rather than replacement. As such, this enhancement is melded with pre-existing devices, approaches, and technologies. Overall, the pre-existing Pulse Code Modulation (PCM) data delivery mechanism is augmented with bi-directional, reliable, TmNS-provided communication.
2

iNET Networking Standards Test Bed

Newton, Todd A., Kenney, Joshua D., Moodie, Myron L., Grace, Thomas B. 10 1900 (has links)
ITC/USA 2009 Conference Proceedings / The Forty-Fifth Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2009 / Riviera Hotel & Convention Center, Las Vegas, Nevada / The integrated Network-Enhanced Telemetry (iNET) project working groups have developed standards for Telemetry Network Systems (TmNS). In order for the standards to mature, the functionality of the standards will be demonstrated. To achieve this, efforts have been undertaken to simulate (and at times emulate) the key interfaces and to assess performance. To facilitate this work, a common network test bed has been developed. This test bed allows for validation of the iNET standards' performance characteristics.
3

Telemetry Network System (TmNS) Link Management Modeling and Simulation

O'Connell, Ray, Webster, Lyle 10 1900 (has links)
ITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevada / The TmNS system employs a novel channel access approach to achieve efficient use of the available spectrum while still providing a reliable bi-directional telemetry link. At the heart of this process is the Link Manager which performs real time adjustments to the transmission windows of radios as it senses changes in network connectivity, transmit queue loading, and network management input. Dynamic network capacity control based on radio queue loading is presented as an example of an operation to be verified by modeling and simulation.
4

EXTENDING CHAPTER 10 RECORDING WITH TELEMETRY NETWORK STANDARDS

Moodie, Myron L., Newton, Todd A. 10 1900 (has links)
RCC 106 Chapter 10 has established the standard for interoperable flight test recording on the DOD ranges. The growth of network and distributed technologies in flight test instrumentation (FTI) has led to the recent adoption of Chapters 21 through 28 to provide standards for implementing interoperable telemetry networks. However, the new standards have led to confusion and concern that the investment in Chapter 10 recorders will be lost. This paper first clarifies the complementary nature of the RCC 106 chapters and proposes one possible path to extending the current capability of a Chapter 10 recorder with telemetry network capability while minimizing impact to existing recording and support systems.
5

Information Assurance (IA) Considerations for a Telemetry Network System (TmNS)

Hodack, David 10 1900 (has links)
ITC/USA 2010 Conference Proceedings / The Forty-Sixth Annual International Telemetering Conference and Technical Exhibition / October 25-28, 2010 / Town and Country Resort & Convention Center, San Diego, California / The integrated Network Enhanced Telemetry (iNET) project was launched by the Central Test and Evaluation Investment Program (CTEIP) to foster network enhanced instrumentation and telemetry. The iNET program is preparing for the TmNS system demonstration. The goal of the demonstration is to prove that the proposed TmNS will meet the Test Capability Requirements Document (TCRD) and validate the iNET standards. One aspect of the preparation is looking at the IA issues and making decisions to ensure that the system will be certified and accredited, meet user needs, and be secure. This paper will explore a few of these considerations.
6

Implementation of an iNET-Enabled End-Node Utilizing an MDL-Based Telemetry System Architecture

Yin, Xianghong, Sulewski, Joe 10 1900 (has links)
ITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevada / Today's telemetry systems need to be highly configurable and easily extensible to support a constantly growing number of data acquisition/transmitting components from different manufacturers. One way to achieve this goal is through a standardized descriptive language that can define the system structure as well as end-node devices. The integrated Network Enhanced Telemetry (iNET) program has explored such a possibility by creating a series of standards to define how devices are configured and interoperate with each other. As one of the standards created by the iNET program, the Metadata Description Language (MDL) specifies a common interchange language that defines and configures a Telemetry Network System (TmNS). MDL Instance Documents are used to exchange test requirements, data formats and configuration information among the devices within a TmNS system. MDL, together with other standards created in the iNET program, serve as a foundation for assembling a modern telemetry system. This paper starts with an overview of the MDL-based system description architecture. A typical configuration workflow of an MDL-based system is then described. iNET functionality implementations for new and legacy devices are used as examples to illustrate the power of MDL-based design, as well as the challenges and issues associated with the implementation of the MDL standard. We explain and evaluate the design decisions for a new product, the L-3 NetDAS Recorder, as the case study. We also discuss how a legacy Data Acquisition Unit (DAU) acting as an LTC Data Source Unit can be updated to support MDL based iNET functionality. Our practice shows that more efficient data acquisition systems can be designed and implemented using the metadata definition language as a core tool for equipment and system description. We conclude the paper with design tradeoffs and discussions.
7

iNET System Manager

Noonan, Patrick J., Newton, Todd A., Willden, Gregory C., Grace, Thomas B., Malatesta, William A. 10 1900 (has links)
ITC/USA 2014 Conference Proceedings / The Fiftieth Annual International Telemetering Conference and Technical Exhibition / October 20-23, 2014 / Town and Country Resort & Convention Center, San Diego, CA / Network-based telemetry systems have unprecedented amounts of flexibility due to the ability to monitor, control, configure, coordinate, and visualize the operations of the flight test system. As a result of this flexibility, multiple tests can be conducted in a single flight; all it takes is reconfiguration of portions of the system. However, management of such a dynamic system is a complex task. As such, the integrated Network Enhanced Telemetry (iNET) Program is currently developing a System Manager application to provide a model for coordinated management of networked telemetry. The System Manager provides a user application for monitoring, controlling, configuring, coordinating, and visualizing the operations of the Telemetry Network System (TmNS) network. This paper describes the key requirements, capabilities, and development approach of the System Manager.
8

Telemetry Network System (TMNS) Link Management Algorithm Verification

O'Connell, Ray 10 1900 (has links)
ITC/USA 2013 Conference Proceedings / The Forty-Ninth Annual International Telemetering Conference and Technical Exhibition / October 21-24, 2013 / Bally's Hotel & Convention Center, Las Vegas, NV / Telemetry Network System (TmNS) contains a centralized link manager which allows efficient use of the frequency spectrum by dynamically allocating capacity to transmit based on need and priority. To verify the accurate operation of the telemetry system link management algorithm prior to system demonstration, a combination of novel techniques were leveraged in the areas of modeling and simulation, and test bed verification. This paper will cover the process of verifying the link management algorithm from the use of the OPNET iNET simulation to test bed radio simulators along with the developed test bed tools used to capture the results.
9

Telemetry Network Systems (TMNS) RF Link Management Quality of Service

O'Connell, Ray, Webster, Lyle, Kaba, James 10 1900 (has links)
ITC/USA 2012 Conference Proceedings / The Forty-Eighth Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2012 / Town and Country Resort & Convention Center, San Diego, California / In the Telemetry Network System (TmNS) the prioritization of mission traffic is performed by internal radio queuing disciplines and the Link Manager performing adjustments to each radio transmit window in the TDMA network. These processes combine to provide the QoS traffic handling across the range. The radios provide the transmit packet prioritization using queuing disciplines which can be assigned to mission traffic flows. The Link Manager on the ground receives periodic reports of queue levels from each radio and performs transmit capacity adjustments based on internal radio and network wide conditions. Presented in this paper is the design of this TmNS RF Link Management QoS process with OPNET modeling and simulation results.
10

Characterizing Test Range Network Infrastructure in Anticipation of iNET Deployment and Design

Martin, Joseph D. 10 1900 (has links)
ITC/USA 2012 Conference Proceedings / The Forty-Eighth Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2012 / Town and Country Resort & Convention Center, San Diego, California / The iNET program uses network technology and infrastructure to enhance traditional telemetry systems. The program's components were designed with an eye to existing and emerging technology and infrastructure, requiring the program to gather data about these systems. The methods used in this design effort can be used to characterize existing network infrastructure to determine what upgrades and changes are necessary to deploy a TmNS. This paper describes the methods used for characterizing a range network infrastructure and explores network capacity and policy issues effecting a TmNS deployment. This effort includes making estimates and taking measurements of network capacity, surveying and analyzing network routing/management policies, and proposes a system for evaluating networks for future TmNS deployments.

Page generated in 0.0234 seconds