• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implementation of Instantaneous Frequency Estimation based on Time-Varying AR Modeling

Kadanna Pally, Roshin 27 May 2009 (has links)
Instantaneous Frequency (IF) estimation based on time-varying autoregressive (TVAR) modeling has been shown to perform well in practical scenarios when the IF variation is rapid and/or non-linear and only short data records are available for modeling. A challenging aspect of implementing IF estimation based on TVAR modeling is the efficient computation of the time-varying coefficients by solving a set of linear equations referred to as the generalized covariance equations. Conventional approaches such as Gaussian elimination or direct matrix inversion are computationally inefficient for solving such a system of equations especially when the covariance matrix has a high order. We implement two recursive algorithms for efficiently inverting the covariance matrix. First, we implement the Akaike algorithm which exploits the block-Toeplitz structure of the covariance matrix for its recursive inversion. In the second approach, we implement the Wax-Kailath algorithm that achieves a factor of 2 reduction over the Akaike algorithm in the number of recursions involved and the computational effort required to form the inverse matrix. Although a TVAR model works well for IF estimation of frequency modulated (FM) components in white noise, when the model is applied to a signal containing a finitely correlated signal in addition to the white noise, estimation performance degrades; especially when the correlated signal is not weak relative to the FM components. We propose a decorrelating TVAR (DTVAR) model based IF estimation and a DTVAR model based linear prediction error filter for FM interference rejection in a finitely correlated environment. Simulations show notable performance gains for a DTVAR model over the TVAR model for moderate to high SIRs. / Master of Science
2

Efficient solutions to Toeplitz-structured linear systems for signal processing

Turnes, Christopher Kowalczyk 22 May 2014 (has links)
This research develops efficient solution methods for linear systems with scalar and multi-level Toeplitz structure. Toeplitz systems are common in one-dimensional signal-processing applications, and typically correspond to temporal- or spatial-invariance in the underlying physical phenomenon. Over time, a number of algorithms have been developed to solve these systems economically by exploiting their structure. These developments began with the Levinson-Durbin recursion, a classical fast method for solving Toeplitz systems that has become a standard algorithm in signal processing. Over time, more advanced routines known as superfast algorithms were introduced that are capable of solving Toeplitz systems with even lower asymptotic complexity. For multi-dimensional signals, temporally- and spatially-invariant systems have linear-algebraic descriptions characterized by multi-level Toeplitz matrices, which exhibit Toeplitz structure on multiple levels. These matrices lack the same algebraic properties and structural simplicity of their scalar analogs. As a result, it has proven exceedingly difficult to extend the existing scalar Toeplitz algorithms for their treatment. This research presents algorithms to solve scalar and two-level Toeplitz systems through a constructive approach, using methods devised for specialized cases to build more general solution methods. These methods extend known scalar Toeplitz inversion results to more general scalar least-squares problems and to multi-level Toeplitz problems. The resulting algorithms have the potential to provide substantial computational gains for a large class of problems in signal processing, such as image deconvolution, non-uniform resampling, and the reconstruction of spatial volumes from non-uniform Fourier samples.

Page generated in 0.0882 seconds