• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of microglia and Toll-like Receptor-4 in neuronal apoptosis in a subarachnoid hemorrhage model

LeBlanc III, Robert H. 12 March 2016 (has links)
BACKGROUND A subarachnoid hemorrhage (SAH) is a bleed into the subarachnoid space surrounding the brain. This disease affects roughly 30,000 Americans each year and approximately one in six affected individuals die at the time of the ictal event. Individuals that do survive suffer from many complications including delayed cerebral vasospasm (DCV), cerebral edema, fever, and increased intracranial pressure (ICP) amongst others. These patients often suffer from brain damage due to neuronal apoptosis as a consequence of excess neuroinflammation. Microglia, the resident macrophage of the central nervous system, and Toll-like Receptor-4 (TLR4), a pro-inflammatory transmembrane receptor, have both been shown to play a role in the neuroinflammation seen in SAH. RBC components have been shown to activate microglial TLR4, and this event is suggested to trigger downstream mechanisms leading to neuronal apoptosis. The presented research takes a closer look at the role of microglial TLR4 in early neuronal apoptosis seen in an SAH model. METHODS All mice used were 10- to 12-week-old males on a C57BL/6 background: TLR4−/−, MyD88−/−, TRIF−/− and wild type (WT). To induce an SAH, a total of 60 ul of arterial blood from a donor WT mouse was injected for over 30 seconds into another mouse. For in vitro experiments, either primary microglia (PMG) or murine microglial BV2 cells were used. Microglia were separated from murine neuronal HT22 cells by 3um cell culture inserts or transwells, before being stimulated with lipopolysaccharide (LPS), red blood cells (RBCs), or RBC components including hemin (structurally similar to heme) and hemoglobin. In vivo samples were studied using either immunohistochemistry (IHC) or Fluorescence Activated Cell Sorting (FACS), and in vitro cells were studied using IHC and Light Microscopy. Neuronal cell death was measured using TUNEL and/or FloroJade C (FJC) assays. Cognitive function after SAH was measured using the Barnes Maze protocol. RESULTS In a 24-hour time course, more death occurred in the HT22 cells associated with BV2s treated with RBCs for 12-hour and 24-hour incubation time points as compared to 1-hour and 3-hour time points. Similar results were seen in the WT PMGs, as HT22 apoptosis increased in the RBC treated WT groups as the incubation time points increased. The WT PMG and MyD88−/− RBC treated PMGs showed significant death as compared to a WT untreated control (p<0.05) using a FJC assay, and both showed more death in a TUNEL assay as compared to an untreated control. WT mice treated with whole blood and hemoglobin had significantly more apoptosis as compared with a normal saline (NS)-treated control mouse (p<0.05). WT PMGs treated with whole blood and hemoglobin had more apoptosis as compared with an untreated control. MyD88-/- treated with RBC, hemoglobin, and hemin had more HT22 cell death compared with other genotypes treated with the same component. For the Barnes Maze, TLR4−/− mice performed significantly less total errors than WT mice on POD5 and 6 (p<0.01), and took significantly less time to reach the goal chamber on POD4, POD5 (p<0.05), and POD6 (p<0.01). CONCLUSION Our experimental results suggest that a microglial TLR4-dependent, MyD88-independent pathway is involved in neuronal apoptosis very early in an SAH model via RBC and hemoglobin activation, and that neuronal cell apoptosis due to TLR4 expression may be related to SAH-related cognitive and behavioral deficits. Our results suggest that TRIF may be the intracellular adaptor that is involved in this mechanism, but further experiments are needed to confirm this.
2

Caracterização do papel do receptor do tipo Toll 4 (TLR4) em infecção por Aggregatibacter actinomycetemcomitans / The role of TLR4 (Toll like receptor 4) in the recognition of Aggregatibacter actinomycetemcomitans

Lima, Hayana Ramos 22 April 2009 (has links)
Os tecidos periodontais estão em confronto continuo com microorganismos capazes de disparar mecanismos da resposta imune inata, dando origem ao infiltrado inflamatório. Estudos recentes mostraram a importancia dos receptores do tipo Toll (TLRs) na fase inicial de reconhecimento de diferentes patogenos. A participação de receptores tipo Toll (TLRs) na resposta de neutrófilos e macrófagos frente a periodontopatógenos precisa ser determinada. Nesse estudo procuramos caracterizar o infiltrado inflamatório presente no peritônio de animais deficientes de TLR4-/-, avaliar a atividade fagocítica, bem como a produção de óxido nítrico (NO) e a atividade de mieloperoxidase (MPO) no curso da infecção por Aggregatibacter actinomycetemcomitans. A ausência de TLR4 não influenciou a quimiotaxia de neutrófilos e macrófagos para o local da infecção, a produção de óxido nítrico, a atividade de MPO e a viabilidade celular. No entanto, neutrófilos e macrófagos de animais TLR4-/- apresentaram menor atividade fagocítica quando comparado ao grupo controle (camundongos WT). Em relação a doença periodontal induzida experimentalmente com Aggregatibacter actinomycetemcomitans em camundongos deficientes de TLR4, os resultados mostraram que 100% dos animais deficientes de TLR4 sobreviveram a infecção durante o período de observação. Em relação a análise de perda óssea, os dados revelaram uma menor perda progressiva de osso alveolar na região dos molares de animais deficientes de TLR4. A ausência do receptor interferiu na disseminação da bactéria, uma vez que se observou um grande número de bacilos no linfonodo e baco dos animais que não expressaram TLR4, diferente do observado para os animais selvagens (WT). Os resultados indicam a importância da sinalização via TLR4 durante a resposta imune contra Aggregatibacter actinomycetemcomitans. / Aggregatibacter actinomycetemcomitans is an oral gram negative bacteria that contributes to periodontitis progression. Isolated antigens from A. actinomycetemcomitans could be activating innate immune cells through Toll-like receptors (TLRs), molecules that recognize structural components conserved among microorganisms. In this study, we evaluated the role of TLR4 in the recognition of Aggregatibacter actinomycetemcomitans. Neutrophils and macrophage from TLR4 deficient mice and WT mice were collected and used for the subsequent assays. The phagocytosis of leukocytes against A. actinomycetemcomitans and the presence of apoptotic cells were determined by flow cytometry. The in vivo and in vitro production of NO and MPO was evaluated 24h after A. actinomycetemcomitans challenge. In addition, we examined the mechanisms that modulate the outcome of A. actinomycetemcomitans-induced periodontal disease in TLR4-/- mice. The results show that inflammatory cells influx in peritoneal cavity of TLR4-/- mice was similar to that observed into their littermate controls. The phagocytic activity was diminished by cells from TLR4-/- mice. In addition, we did not observe difference in NO and MPO production and the frequency of apoptotic cells between cells from TLR4-/- and WT mice. The results showed that TLR4-deficient mice developed less severe periodontitis after A. actinomycetemcomitans infection, characterized by significantly lower bone loss and inflammatory cell migration to periodontal tissues. Together, these data demonstrate the role TLR4 signals for neutrophils activation after A. actinomycetemcomitans infection and development of periodontal disease.
3

Caracterização do papel do receptor do tipo Toll 4 (TLR4) em infecção por Aggregatibacter actinomycetemcomitans / The role of TLR4 (Toll like receptor 4) in the recognition of Aggregatibacter actinomycetemcomitans

Hayana Ramos Lima 22 April 2009 (has links)
Os tecidos periodontais estão em confronto continuo com microorganismos capazes de disparar mecanismos da resposta imune inata, dando origem ao infiltrado inflamatório. Estudos recentes mostraram a importancia dos receptores do tipo Toll (TLRs) na fase inicial de reconhecimento de diferentes patogenos. A participação de receptores tipo Toll (TLRs) na resposta de neutrófilos e macrófagos frente a periodontopatógenos precisa ser determinada. Nesse estudo procuramos caracterizar o infiltrado inflamatório presente no peritônio de animais deficientes de TLR4-/-, avaliar a atividade fagocítica, bem como a produção de óxido nítrico (NO) e a atividade de mieloperoxidase (MPO) no curso da infecção por Aggregatibacter actinomycetemcomitans. A ausência de TLR4 não influenciou a quimiotaxia de neutrófilos e macrófagos para o local da infecção, a produção de óxido nítrico, a atividade de MPO e a viabilidade celular. No entanto, neutrófilos e macrófagos de animais TLR4-/- apresentaram menor atividade fagocítica quando comparado ao grupo controle (camundongos WT). Em relação a doença periodontal induzida experimentalmente com Aggregatibacter actinomycetemcomitans em camundongos deficientes de TLR4, os resultados mostraram que 100% dos animais deficientes de TLR4 sobreviveram a infecção durante o período de observação. Em relação a análise de perda óssea, os dados revelaram uma menor perda progressiva de osso alveolar na região dos molares de animais deficientes de TLR4. A ausência do receptor interferiu na disseminação da bactéria, uma vez que se observou um grande número de bacilos no linfonodo e baco dos animais que não expressaram TLR4, diferente do observado para os animais selvagens (WT). Os resultados indicam a importância da sinalização via TLR4 durante a resposta imune contra Aggregatibacter actinomycetemcomitans. / Aggregatibacter actinomycetemcomitans is an oral gram negative bacteria that contributes to periodontitis progression. Isolated antigens from A. actinomycetemcomitans could be activating innate immune cells through Toll-like receptors (TLRs), molecules that recognize structural components conserved among microorganisms. In this study, we evaluated the role of TLR4 in the recognition of Aggregatibacter actinomycetemcomitans. Neutrophils and macrophage from TLR4 deficient mice and WT mice were collected and used for the subsequent assays. The phagocytosis of leukocytes against A. actinomycetemcomitans and the presence of apoptotic cells were determined by flow cytometry. The in vivo and in vitro production of NO and MPO was evaluated 24h after A. actinomycetemcomitans challenge. In addition, we examined the mechanisms that modulate the outcome of A. actinomycetemcomitans-induced periodontal disease in TLR4-/- mice. The results show that inflammatory cells influx in peritoneal cavity of TLR4-/- mice was similar to that observed into their littermate controls. The phagocytic activity was diminished by cells from TLR4-/- mice. In addition, we did not observe difference in NO and MPO production and the frequency of apoptotic cells between cells from TLR4-/- and WT mice. The results showed that TLR4-deficient mice developed less severe periodontitis after A. actinomycetemcomitans infection, characterized by significantly lower bone loss and inflammatory cell migration to periodontal tissues. Together, these data demonstrate the role TLR4 signals for neutrophils activation after A. actinomycetemcomitans infection and development of periodontal disease.

Page generated in 0.0497 seconds