Spelling suggestions: "subject:"homography -- data processing"" "subject:"homography -- mata processing""
1 |
The use of computerised tomography in cervical spondylotic myelopathy and radiculopathy余毓靈, Yu, Yuk-ling. January 1985 (has links)
published_or_final_version / Medicine / Master / Doctor of Medicine
|
2 |
The feasibility and development of a system for analysis of multispectral computed tomographyPersoff, Jeffrey J. January 1981 (has links)
No description available.
|
3 |
Dynamic computed tomography through interpolation in the time domainLeung, Cheung Hoi. January 1981 (has links)
No description available.
|
4 |
The relationship between nasal turbinate structure and the ecological attributes of ungulatesKietzmann, Michelle Ann January 2010 (has links)
The nasal turbinates of ungulates are complex bony scrolls within the nasal cavity. These intricate bony plates, covered by moist epithelium, provide a large surface area that facilitates a countercurrent exchange of both water and heat between turbinal lining and respired air. Given their functional importance, maxilloturbinate size and structural dimensions may vary among species of different body sizes, activity levels and from different habitats, and may also serve as a predictor of the ability of the species to cope with high temperatures or limiting water resources. This is the first study to measure nasal turbinate surface area in ungulates using high-resolution computed tomography (CT) scanning. Heads of eleven South African bovid species and one European bovid species were successfully scanned and surface area measurements made using stereological techniques. These species included Cape grysbok, springbuck, bushbuck, blesbok, impala, mountain reedbuck, fallow deer, kudu, nyala, gemsbok and blue wildebeest; and represent species of different body sizes, from a range of habitats and with different water dependencies and predator avoidance strategies. The total maxilloturbinate surface area increased with body size for all study species. The surface areas of the nasal turbinates varied rostrocaudally, with the highest surface area occurring approximately midway along the length of the maxilloturbinate bones. The Cape grysbok stood out as having a nasal turbinate surface area of 12.77 cm2/kg, which was lower than the observed trend, the reason for this not being clear from these data. Phylogenetic independent analyses showed that log body mass and water dependence had a significant effect on nasal turbinate surface area, with habitat, distributional range and anti-predator behaviour having no effect. Subsequent phylogenetic species comparisons showed that structural variations in nasal turbinate surface area were phylogeny based due to the close genetic relatedness of the study species, and not associated with any environmental factors. The environmentally linked results for water dependency need further investigation in future studies of larger sample sizes and a broader range of species. Changes in climatic conditions may impact on a species‟ activity patterns, with individuals being forced to make behavioural modifications rather than physiological or anatomical adjustments. However, there is no clear evidence to indicate large differences in nasal turbinate surface area in relation to water dependence. This subsequently rules out the use of nasal turbinate surface area as a predictor to which and how ungulate species will respond to increasing global temperatures.
|
5 |
Dynamic computed tomography through interpolation in the time domainLeung, Cheung Hoi. January 1981 (has links)
No description available.
|
6 |
USE OF A PRIORI INFORMATION FOR IMPROVED TOMOGRAPHIC IMAGING IN CODED-APERTURE SYSTEMS.GINDI, GENE ROBERT. January 1982 (has links)
Coded-aperture imaging offers a method of classical tomographic imaging by encoding the distance of a point from the detector by the lateral scale of the point response function. An estimate, termed a layergram, of the transverse sections of the object can be obtained by performing a simple correlation operation on the detector data. The estimate of one transverse plane contains artifacts contributed by source points from all other planes. These artifacts can be partially removed by a nonlinear algorithm which incorporates a priori knowledge of total integrated object activity per transverse plane, positivity of the quantity being measured, and lateral extent of the object in each plane. The algorithm is iterative and contains, at each step, a linear operation followed by the imposition of a constraint. The use of this class of algorithms is tested by simulating a coded-aperture imaging situation using a one-dimensional code and two-dimensional (one axis perpendicular to aperture) object. Results show nearly perfect reconstructions in noise-free cases for the codes tested. If finite detector resolution and Poisson source noise are taken into account, the reconstructions are still significantly improved relative to the layergram. The algorithm lends itself to implementation on an optical-digital hybrid computer. The problems inherent in a prototype device are characterized and results of its performance are presented.
|
Page generated in 0.1177 seconds