Spelling suggestions: "subject:"homography ett laminography"" "subject:"homography ett farinography""
1 |
Cavitation et rupture du Polyamide 6 sous état de contrainte multiaxial en traction monotone, fluage et fatigue. Dialogue entre imagerie 3D et modélisation par éléments finis. / Cavitation and rupture of Polyamide 6 subjected to monotonic, creep and fatigue loadings under multiaxial stress state. Dialogue between 3D imaging and finite element modeling.Selles, Nathan 22 December 2017 (has links)
De nombreuses structures industrielles soumises à des chargements à long terme statique (fluage) ou cyclique (fatigue) sont constituées de matériaux polymères semi-cristallins. C’est le cas notamment des canalisations et réservoirs sous pression. Il est donc essentiel de traiter les problématiques de durabilité pour être capable d'anticiper et de contrôler leur fin de vie. Par ailleurs, elles présentent généralement des formes complexes et sont soumises à des états de contrainte multiaxiaux.Le matériau de l'étude est un polymère semi-cristallin : le Polyamide 6. Il est caractérisé par la coexistence d'une phase cristalline et d'une phase amorphe qui s'arrangent selon une microstructure sphérolitique.Dans un premier temps, les liens entre comportement mécanique à l'échelle globale de l'éprouvette et les micro-mécanismes de déformation sous-jacents conduisant à la rupture sont établis expérimentalement pour des sollicitations en traction monotone et en fluage qui présentent des résultats similaires puis en fatigue. L'influence de la multiaxialité de l'état de contrainte est étudiée à partir d’éprouvettes axisymétriques entaillées de différents rayons de fond d'entaille et d'éprouvettes « Compact Tensile ». Les phénomènes de cavitation sont caractérisés grâce aux techniques de tomographie et laminographie à rayonnement X synchrotron qui permettent d'observer et de quantifier les distributions spatiales de taux de porosité volumique et le caractère anisotrope des cavités. Et l'analyse des faciès de rupture a permis de mettre en évidence que les mécanismes de croissance et de coalescence de cavités étaient à l'origine de l’amorçage ductile de la rupture.Ensuite, un modèle poro-visco-plastique à deux mécanismes (permettant de différencier le comportement des phases amorphe et cristalline) a été utilisé. Ce modèle permet de reproduire à la fois le comportement global (courbes de chargement) en traction monotone et en fluage mais aussi les distributions spatiales de taux de porosité obtenues expérimentalement. De plus, les calculs par éléments finis permettent d'étudier les distributions spatiales du champ de contrainte et d'établir l'influence de l'état de contrainte sur l'état de cavitation. Les évolutions temporelles en cours de déformation de la pression hydrostatique (ou contrainte moyenne) ont été reliées aux distributions spatiales de taux de porosité volumique. Et l'anisotropie de cavitation (et donc la morphologie et les facteurs de forme des cavités) a été reliée aux évolutions des composantes du tenseur des contraintes de Cauchy. Enfin, la définition d'un critère de rupture en taux de porosité critique a permis de simuler l'amorçage et la propagation de fissures en traction monotone et fluage. / Many industrial structures subjected to quasi-static (creep) or cyclic (fatigue) long-term loadings are made of semi-crystalline polymers. Such is the case, for instance, of pressure vessels and pipes. It is therefore considered critical to study the issues related to their durability in order to be able to anticipate and control their end of life. Furthermore, they generally have complex designs and are subjected to multiaxial stress states.The material which has been studied was a semi-crystalline Polyamide 6. Its structure consisted of amorphous and the crystalline phases and a spherolitic microstructure.As a first step, the links between the mechanical behaviour at the global scale of the specimens and the underlying micro-mechanisms of deformation that lead to failure have been established experimentally for monotonic and creep loadings that show similar results and then for fatigue loadings. The influence of the multiaxiality of the stress state has been studied using circumferentially notched round bars with different notch root radii and Compact Tensile specimens. The cavitation phenomena were characterized using synchrotron radiation tomography and laminography techniques that enabled the observation and quantification of the spatial distributions of the voids and the anisotropy of the cavities. An analysis of the fracture surfaces has shown that the initiation of ductile failure resulted from void growth and coalescence mechanismsA poro-visco-plastic model with two mechanisms (that allow the behaviours of the amorphous and crystalline phases to be distinguished) has been used. Thanks to this model, the global behaviour (loading curves) under steady strain rates and steady loads but also the spatial distributions of the void volume fraction could be reproduced numerically. In addition finite element calculations have permitted the spatial distributions of the stress field to be studied and the influence of the stress state on the cavitation state to be investigated. The temporal evolutions during the deformation of the hydrostatic pressure have been linked to the spatial distributions of void volume fraction. The void anisotropy (and thus the void morphology and shape factors) has been related to the evolutions of the components of the Cauchy stress tensor. Finally, the definition of a rupture criterion based on a critical value of the void volume fraction has enabled crack propagation under steady strain rate and steady load to be simulated.
|
Page generated in 0.0575 seconds