• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation de transistors en couches minces (TFT) fabriqués en technologie silicium microcristallin très basse température / Modeling of thin film transistors (TFT) based on microcrystalline silicon fabricated at low temperature

Samb, Mamadou Lamine 15 December 2014 (has links)
Cette thèse porte sur la modélisation de TFTs à base de silicium microcristallin fabriqués à basse température. L'enjeu est de produire un modèle de TFT valide qui nous permettra d'apporter des explications sur les phénomènes observés expérimentalement et qui pourrait servir de base à un modèle compact. Tout d'abord, une étude expérimentale, dans laquelle il est montré l'effet bénéfique de l'utilisation de fines couches actives pour les TFTs, a été effectuée. En effet, plus la couche active des TFTs est fine, plus les TFTs sont stables, et meilleures sont leurs caractéristiques électriques. La croissance colonnaire de la structure du silicium microcristallin et le mauvais état de surface pour les grandes épaisseurs de couche active jouent un rôle important sur la détérioration de la qualité des TFTs. Par la suite, une simulation (sous SILVACO) du comportement des TFTs ayant des couches actives de différentes épaisseurs a été effectuée, pour essayer d'apporter des explications d'ordre électrostatique. Les mêmes effets observés sont surtout causés par une augmentation du champ électrique latéral lorsque l'épaisseur de la couche active diminue pour un matériau défectueux, favorisant ainsi la formation rapide du canal. La mauvaise qualité des interfaces avant et arrière a aussi une forte influence sur la détérioration des caractéristiques électriques de TFTs. Cette influence est réduite en utilisant une très fine couche active. / This thesis focuses on the modeling of TFTs based on microcrystalline silicon fabricated at low temperature. The challenge is to produce a valid model of TFT which enable us to provide an explanation of the phenomena observed experimentally and that could be the basis for a compact model. Firstly, an experimental study, in which it is shown the beneficial effect for the use of thin active layers for TFTs, has been performed. Indeed, the TFTs performances are better, when their active layers are more thin. The columnar growth of microcrystalline silicon structure and the bad interfaces state for thick active layer have an important part in the deterioration of the quality of TFTs. Thereafter , a simulation (on SILVACO ) of the behavior of TFTs with active layers of different thicknesses were made to try to provide electrostatic explanations. The same effects are caused mainly by an increase of the lateral electric field when the thickness of the active layer decreases for a defective material, promoting thereby the rapid formation of the channel. The bad quality of the front and rear interfaces has also a strong influence on the deterioration of electrical characteristics of TFTs. This influence is reduced by using a very thin active layer.
2

Mono-layer C-face epitaxial graphene for high frequency electronics

Guo, Zelei 27 August 2014 (has links)
As the thinnest material ever with high carrier mobility and saturation velocity, graphene is considered as a candidate for future high speed electronics. After pioneering research on graphene-based electronics at Georgia Tech, epitaxial graphene on SiC, along with other synthesized graphene, has been extensively investigated for possible applications in high frequency analog circuits. With a combined effort from academic and industrial research institutions, the best cut-off frequency of graphene radio-frequency (RF) transistors is already comparable to the best result of III-V material-based devices. However, the power gain performance of graphene transistors remained low, and the absence of a band gap inhibits the possibility of graphene in digital electronics. Aiming at solving these problems, this thesis will demonstrate the effort toward better high frequency power gain performance based on mono-layer epitaxial graphene on C-face SiC. Besides, a graphene/Si integration scheme will be proposed that utilizes the high speed potential of graphene electronics and logic functionality and maturity of Si-CMOS platform at the same time.

Page generated in 0.0689 seconds