• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Topics Analysis Model for Health Insurance Claims

Webb, Jared Anthony 18 October 2013 (has links) (PDF)
Mathematical probability has a rich theory and powerful applications. Of particular note is the Markov chain Monte Carlo (MCMC) method for sampling from high dimensional distributions that may not admit a naive analysis. We develop the theory of the MCMC method from first principles and prove its relevance. We also define a Bayesian hierarchical model for generating data. By understanding how data are generated we may infer hidden structure about these models. We use a specific MCMC method called a Gibbs' sampler to discover topic distributions in a hierarchical Bayesian model called Topics Over Time. We propose an innovative use of this model to discover disease and treatment topics in a corpus of health insurance claims data. By representing individuals as mixtures of topics, we are able to consider their future costs on an individual level rather than as part of a large collective.

Page generated in 0.0736 seconds