• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermal and lighting performance of toplighting systems in the hot and humid climate of Thailand

Harntaweewongsa, Siritip 30 October 2006 (has links)
This study evaluated the potential of toplighting systems in the hot and humid tropics by using Bangkok, Thailand (latitude 13.7°N) as a test location. The analysis tested both the thermal and lighting performance of three toplighting systems. Toplighting, designed for use in one-story buildings or on the top floor of taller buildings, yields a uniformly distributed light throughout a space. However, in lower latitude locations, where there is no heating period, heat gain is a critical design issue since it significantly affects the annual energy consumption of the building. Accordingly, the decision to use toplighting in these locations needs to be carefully examined before any design considerations occur. In this study, the thermal and lighting performance of three toplighting systems were compared. For the thermal performance, total cooling loads, heat gains and losses, and interior temperature were evaluated. The lighting performance parameters examined were daylight factor, illuminance level, light distribution, and uniformity. EnergyPlus was used as the thermal analysis tool, and RADIANCE, along with a physical scale model, was used as the lighting performance analysis tool. The sky conditions tested were overcast, clear sky, and intermediate sky. Results have shown that, for locations with hot and humid climates with variable sky conditions such as Bangkok, Thailand, the roof monitors perform better than the other two systems in terms of the thermal and lighting performance. With similar cooling loads, the roof monitor provides better illuminance uniformity than the skylights and lightscoops, with adequate illuminance level (at mostly higher than 500 lux).
2

Thermal and lighting performance of toplighting systems in the hot and humid climate of Thailand

Harntaweewongsa, Siritip 30 October 2006 (has links)
This study evaluated the potential of toplighting systems in the hot and humid tropics by using Bangkok, Thailand (latitude 13.7°N) as a test location. The analysis tested both the thermal and lighting performance of three toplighting systems. Toplighting, designed for use in one-story buildings or on the top floor of taller buildings, yields a uniformly distributed light throughout a space. However, in lower latitude locations, where there is no heating period, heat gain is a critical design issue since it significantly affects the annual energy consumption of the building. Accordingly, the decision to use toplighting in these locations needs to be carefully examined before any design considerations occur. In this study, the thermal and lighting performance of three toplighting systems were compared. For the thermal performance, total cooling loads, heat gains and losses, and interior temperature were evaluated. The lighting performance parameters examined were daylight factor, illuminance level, light distribution, and uniformity. EnergyPlus was used as the thermal analysis tool, and RADIANCE, along with a physical scale model, was used as the lighting performance analysis tool. The sky conditions tested were overcast, clear sky, and intermediate sky. Results have shown that, for locations with hot and humid climates with variable sky conditions such as Bangkok, Thailand, the roof monitors perform better than the other two systems in terms of the thermal and lighting performance. With similar cooling loads, the roof monitor provides better illuminance uniformity than the skylights and lightscoops, with adequate illuminance level (at mostly higher than 500 lux).
3

Energy analysis of toplighting strategies for office buildings in Austin

Motamedi, Sara 25 April 2013 (has links)
The purpose of this study is to determine the energy impacts of daylighing through toplights in a hot humid climate. Daylight in the working environment improves the quality of the space, and productivity of employees. In addition, natural light is a free energy resource. On one hand, a proper design of daylight such as distributed toplights can reduce the electrical lighting consumption. On the other hand, in a hot climate like Austin heat gain is a major concern. Therefore, this thesis is shaped around this question: Can toplighting strategies save energy in Austin despite the fact that buildings receive more direct heat gain through toplights? The importance of daylighting is more revealed since electrical lighting takes up a significant portion of the total building energy use (21%). In this thesis I investigated the reduction of lighting electricity and compared that with the total effects of toplights on external conductance, lighting heat gain and solar gain. The results of my thesis show that regarding the site energy a proper toplighting strategy can save electrical lighting up to (70%) with smaller impact on heating and cooling loads. This means that toplights generally can be energy efficient alternatives for a one storey office building. Developing my research I studied which toplights are more efficient: north sawtooth roofs, south sawtooth roofs, monitor roofs or very simple skylights. I compared different toplighting strategies and provided a design guide containing graphs of site energy, source energy, annual cost saving per square feet, as well as light distribution of each toplight. I believe this can accelerate implementation of efficient toplighting strategies in the design process. Concluding how significantly efficient daylighting is over heat gain, I finalized my research by comparison of skylights with different visible transmission (VT) and solar heat gain coefficient (SHGC). The major result of this thesis is that proper toplighting strategies can save energy despite the increased solar gain. It is anticipated that the thesis findings will promote the implementation of toplighting strategies and higher VT glass type in the energy efficient building industry. / text

Page generated in 0.0612 seconds