Spelling suggestions: "subject:"topochemical polymerization"" "subject:"tropochemical polymerization""
1 |
<strong>Synthesis, Recycling, and Processing of Topochemical Polymer Single Crystals</strong>Zitang Wei (16325274) 15 June 2023 (has links)
<p> </p>
<p>Plastics play crucial rules in almost every aspect of life. Unique properties of plastics like chemical and light resistant, strong, moldable, and low cost make plastic materials useful in many aspects of our global society. However, largely relying on feedstock resources like fossil fuels, plastics production is not sustainable. Thus, plastic recycling could be an efficient alternative to save feedstock resources as well as to reduce production cost.</p>
<p>Recently, a series of polymer materials synthesized via topochemical polymerization are considered as strong candidates for next generation recyclable plastics. It is well-known that topochemical polymerization has high efficiency and environment-friendly features, such as solvent-free and catalyst-free reaction conditions, high reaction yield without side reactions, and atom economy. Yet, there exist few studies on depolymerizing and recycling those polymers. A unique topochemically polymerizable polyindenedione derivative [2,2'-Bi-1H-indene]-1,1'-dione-3,3'-diyl dialkylcarboxylate (polyBIT) with rapid and quantitative depolymerization was discovered via breakage of elongated carbon-carbon (C-C) bonds with bond length of 1.57∼1.63 Å. The elongated C-C bonds have been proven theoretically and experimentally to have significantly lower bond dissociation energies than normal C-C bonds, and it is the major driving force to depolymerize polyBIT polymer single crystals. </p>
<p>Different from most traditional polymers that can be dissolved or melt processed, topochemical polymer single crystals are not soluble in most common solvents due to their highly crystalline and ordered nature. This unique feature inhibited topochemical polymer crystals from practical applications. To convert needle-like polyBIT crystals into useful forms, I developed an ultrasonication method to break large polymer crystals into small fibers that can be uniformly suspended in organic solvents. Followed by vacuum filtration and heat press, polyBIT crystals can be processed into robust and freestanding polymer thin films. The processed thin films presented reasonable mechanical properties with Young’s modulus of over 600MPa and are stable under harsh conditions.</p>
<p>Topochemical polymerization reactions require specific monomer packings before applying external stimuli, and a small change in monomer structure may completely alter the reactivity. Therefore, functionalizing monomer structures for topochemical reactions is quite challenging. In the polyBIT system, we attempted to functionalize BIT monomer with several linear and branched side chains. After preparing monomer crystals, only needle-like 1D monomers can be photopolymerized, while plate-like 2D monomer crystals became photostable. Introducing heteroatoms (such as oxygen, sulfur, bromine, chlorine) can induce different non-bonding interactions and interactions, which combined can push monomers away from one another to make them unreactive. Introducing branched side chains will also change the distances between two BIT monomers and leads to unreactive crystals when the branched side chain is too bulky (such as when tertbutyl group is on the end of side chain). Functionalizing side chains for polyBIT crystals can further tune the mechanical properties of the crystals: swapping end methyl group with a simple bromine atom can induce multiple intermolecular and interchain interaction including weak hydrogen bonding and C−H···Br interactions. These interactions bind all the polymer chains together to provide a strong 1D polymer fiber with elastic modulus over 10.6 GPa. These results suggest that the crystalline polymers synthesized from simple photochemistry and without expensive catalysts are promising for practical applications with complete materials circularity and wide range of structural and mechanical turnabilities.</p>
|
2 |
Différentes stratégies d’auto-assemblage de dérivés diacétyléniques porteurs d’hétérocycles azotés aromatiques : application à la synthèse de matériaux / Various strategies for the self-assembly of diacetylene derivatives bearing nitrogen- containing aromatic heterocycles : application to the synthesis of materialsFahsi, Karim 06 December 2012 (has links)
Les polydiacétylènes sont des polymères π-conjugués, obtenus par polymérisation topochimique à l'état solide de motifs diacétyléniques, sous l'effet d'un stimulus thermique ou photochimique. Depuis leur découverte en 1969 par Wegner, les polydiacétylènes ont fait l'objet de nombreux travaux de recherche. Ces travaux ont consisté tout d'abord à élucider le mécanisme de polymérisation, puis à étudier les diverses propriétés photophysiques, optiques, et électroniques des polymères. Néanmoins, la plupart des diacétylènes étudiés ne possédaient pas de substituants susceptibles d'être modifiés chimiquement. Le premier chapitre de cette thèse décrit la synthèse de nouvelles molécules diacétyléniques symétriques comportant des groupements azoles, et l'étude de leur polymérisation à l'état solide. La modification de l'organisation des motifs diacétyléniques.par interaction avec des molécules capables de former des liaisons hydrogène, et l'incorporation de ces motifs dans des matériaux hybrides organiques-inorganiques de type,. MOF ont également été examinées.Dans le deuxième chapitre, nous nous sommes intéressés aux composés diacétyléniques dicationiques fonctionnalisés par des groupements triéthylammoniums, imidazoliums et benzimidazoliums. La synthèse de ces composés, leur caractérisation spectroscopique, et cristallographique, ainsi que l'étude de leur réactivité thermique et photochimique ont été réalisées.Dans le troisième chapitre, nous proposons une méthode directe de préparation de carbone dopé à l'azote par pyrolyse des molécules diacétyléniques neutres, ainsi que la synthèse de carbone mésoporeux en présence d'un sel métallique. Un autre aspect de ce chapitre est l'optimisation des teneurs en azote en utilisant comme précurseurs les composés diacétyléniques dicationiques, associés à des anions riches en azote, notamment l'anion dicyanamide [dca] et tricyanométhide [tcm]. / Diacetylenes (DA) are unusual molecules owing to their ability to polymerize in the solid state. Such a polymerization is triggered off thermally or photochemicaly, and leads to the formation of enyne structures. Since their discovery in 1969 by Wegner, polydiacetylenes (PDA) have been the focus of much attention. Initially, many studies were devoted to elucidating the mechanism of polymerization, then assessment of the diverse photophysical, optical, and electronic properties of the polymers became the main goal. Yet, the vast majority of the DA that were studied did not possess substituents that could be modified chemicallyThe first chapter describes the synthesis of new symmetrical diacetylenic molecules functionalized with azole substituents and the study of the polymerization of these compounds in the solid state. Then, we present the modification of the organization of these diacetylenes by the interaction with molecules capable of forming hydrogen bonds, and the use of these molecules as ligands for the synthesis of Metal Organic Frameworks (MOF).The second chapter is devoted to the synthesis, characterization and crystallographic study of ionic diacetylenic compounds bearing triethylammonium, imidazolium and benzimidazolium groups. The photochemical and thermal behaviors of these DA have been tested.In the third chapter, we propose a straightforward route to N-doped graphitic carbon by direct pyrolysis of neutral diacetylenic precursors, and investigate the possibility of forming porous materials by adding a metal salt as a catalyst. Furthermore, another aspect of this chapter was to optimize the nitrogen content of these materials by using dicationic DA with N-rich anions, e.g. dicyanamide [dca] and tricyanomethide [tcm].
|
Page generated in 0.1321 seconds