• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Topologias maximais com respeito a algumas famílias de subconjuntos / Maximal topologies with respect to some families of subsets

Mercado, Henry José Gullo 18 March 2016 (has links)
Seja (X; t) um espaço topológico e seja F a família de todos os subconjuntos de X que satisfazem uma propriedade topológica dada P (invariante por homeomorfismos). Se acrescentarmos abertos novos à topologia e se F\' é a família de todos os subconjuntos do novo espaço que satisfazem a propriedade P, podemos ter que F ≠ F\'. Se isto sempre acontece, dizemos que o espaço (X; t) é maximal com respeito à família F. Neste trabalho estudaremos os espaços topológicos maximais com respeito a algumas famílias de subconjuntos: discretos, compactos, densos, conexos e das sequências convergentes. / Let (X; t) be a topological space and let F be the family of all subsets of X that satisfy a given topological property P (invariant under homeomorphisms). If we add new open sets to the topology and if F\' is the family of all subsets of the new space which satisfy the property P, we can have F ≠ F\'. If this is always the case, we say that (X; t) is maximal with respect to the family F. We show here some characterizations of maximal spaces with respect to the family of some of its subsets: compacts, dense, discrete and convergent sequences.
2

Topologias maximais com respeito a algumas famílias de subconjuntos / Maximal topologies with respect to some families of subsets

Henry José Gullo Mercado 18 March 2016 (has links)
Seja (X; t) um espaço topológico e seja F a família de todos os subconjuntos de X que satisfazem uma propriedade topológica dada P (invariante por homeomorfismos). Se acrescentarmos abertos novos à topologia e se F\' é a família de todos os subconjuntos do novo espaço que satisfazem a propriedade P, podemos ter que F ≠ F\'. Se isto sempre acontece, dizemos que o espaço (X; t) é maximal com respeito à família F. Neste trabalho estudaremos os espaços topológicos maximais com respeito a algumas famílias de subconjuntos: discretos, compactos, densos, conexos e das sequências convergentes. / Let (X; t) be a topological space and let F be the family of all subsets of X that satisfy a given topological property P (invariant under homeomorphisms). If we add new open sets to the topology and if F\' is the family of all subsets of the new space which satisfy the property P, we can have F ≠ F\'. If this is always the case, we say that (X; t) is maximal with respect to the family F. We show here some characterizations of maximal spaces with respect to the family of some of its subsets: compacts, dense, discrete and convergent sequences.

Page generated in 0.0573 seconds