• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bi-filtration and stability of TDA mapper for point cloud data

Bungula, Wako Tasisa 01 August 2019 (has links)
TDA mapper is an algorithm used to visualize and analyze big data. TDA mapper is applied to a dataset, X, equipped with a filter function f from X to R. The output of the algorithm is an abstract graph (or simplicial complex). The abstract graph captures topological and geometric information of the underlying space of X. One of the interests in TDA mapper is to study whether or not a mapper graph is stable. That is, if a dataset X is perturbed by a small value, and denote the perturbed dataset by X∂, we would like to compare the TDA mapper graph of X to the TDA mapper graph of X∂. Given a topological space X, if the cover of the image of f satisfies certain conditions, Tamal Dey, Facundo Memoli, and Yusu Wang proved that the TDA mapper is stable. That is, the mapper graph of X differs from the mapper graph of X∂ by a small value measured via homology. The goal of this thesis is three-fold. The first is to introduce a modified TDA mapper algorithm. The fundamental difference between TDA mapper and the modified version is the modified version avoids the use of filter function. In comparing the mapper graph outputs, the proposed modified mapper is shown to capture more geometric and topological features. We discuss the advantages and disadvantages of the modified mapper. Tamal Dey, Facundo Memoli, and Yusu Wang showed that a filtration of covers induce a filtration of simplicial complexes, which in turn induces a filtration of homology groups. While Tamal Dey, Facundo Memoli, and Yusu Wang focused on TDA mapper's application to topological space, the second goal of this thesis is to show DBSCAN clustering gives a filtration of covers when TDA mapper is applied to a point cloud. Hence, DBSCAN gives a filtration of mapper graphs (simplicial complexes) and homology groups. More importantly, DBSCAN gives a filtration of covers, mapper graphs, and homology groups in three parameter directions: bin size, epsilon, and Minpts. Hence, there is a multi-dimensional filtration of covers, mapper graphs, and homology groups. We also note that single-linkage clustering is a special case of DBSCAN clustering, so the results proved to be true when DBSCAN is used are also true when single-linkage is used. However, complete-linkage does not give a filtration of covers in the direction of bin, hence no filtration of simpicial complexes and homology groups exist when complete-linkage is applied to cluster a dataset. In general, the results hold for any clustering algorithm that gives a filtration of covers. The third (and last) goal of this thesis is to prove that two multi-dimensional persistence modules (one: with respect to the original dataset, X; two: with respect to the ∂-perturbation of X) are 2∂-interleaved. In other words, the mapper graphs of X and X∂ differ by a small value as measured by homology.
2

Traffic Prediction From Temporal Graphs Using Representation Learning / Trafikförutsägelse från dynamiska grafer genom representationsinlärning

Movin, Andreas January 2021 (has links)
With the arrival of 5G networks, telecommunication systems are becoming more intelligent, integrated, and broadly used. This thesis focuses on predicting the upcoming traffic to efficiently promote resource allocation, guarantee stability and reliability of the network. Since networks modeled as graphs potentially capture more information than tabular data, the construction of the graph and choice of the model are key to achieve a good prediction. In this thesis traffic prediction is based on a time-evolving graph, whose node and edges encode the structure and activity of the system. Edges are created by dynamic time-warping (DTW), geographical distance, and $k$-nearest neighbors. The node features contain different temporal information together with spatial information computed by methods from topological data analysis (TDA). To capture the temporal and spatial dependency of the graph several dynamic graph methods are compared. Throughout experiments, we could observe that the most successful model GConvGRU performs best for edges created by DTW and node features that include temporal information across multiple time steps. / Med ankomsten av 5G nätverk blir telekommunikationssystemen alltmer intelligenta, integrerade, och bredare använda. Denna uppsats fokuserar på att förutse den kommande nättrafiken, för att effektivt hantera resursallokering, garantera stabilitet och pålitlighet av nätverken. Eftersom nätverk som modelleras som grafer har potential att innehålla mer information än tabulär data, är skapandet av grafen och valet av metod viktigt för att uppnå en bra förutsägelse. I denna uppsats är trafikförutsägelsen baserad på grafer som ändras över tid, vars noder och länkar fångar strukturen och aktiviteten av systemet. Länkarna skapas genom dynamisk time warping (DTW), geografisk distans, och $k$-närmaste grannarna. Egenskaperna för noderna består av dynamisk och rumslig information som beräknats av metoder från topologisk dataanalys (TDA). För att inkludera såväl det dynamiska som det rumsliga beroendet av grafen, jämförs flera dynamiska grafmetoder. Genom experiment, kunde vi observera att den mest framgångsrika modellen GConvGRU presterade bäst för länkar skapade genom DTW och noder som innehåller dynamisk information över flera tidssteg.

Page generated in 0.0586 seconds