• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A New Backoff Strategy Using Topological Persistence In Wireless Networks

January 2013 (has links)
abstract: Contention based IEEE 802.11MAC uses the binary exponential backoff algorithm (BEB) for the contention resolution. The protocol suffers poor performance in the heavily loaded networks and MANETs, high collision rate and packet drops, probabilistic delay guarantees, and unfairness. Many backoff strategies were proposed to improve the performance of IEEE 802.11 but all ignore the network topology and demand. Persistence is defined as the fraction of time a node is allowed to transmit, when this allowance should take into account topology and load, it is topology and load aware persistence (TLA). We develop a relation between contention window size and the TLA-persistence. We implement a new backoff strategy where the TLA-persistence is defined as the lexicographic max-min channel allocation. We use a centralized algorithm to calculate each node's TLApersistence and then convert it into a contention window size. The new backoff strategy is evaluated in simulation, comparing with that of the IEEE 802.11 using BEB. In most of the static scenarios like exposed terminal, flow in the middle, star topology, and heavy loaded multi-hop networks and in MANETs, through the simulation study, we show that the new backoff strategy achieves higher overall average throughput as compared to that of the IEEE 802.11 using BEB. / Dissertation/Thesis / M.S. Computer Science 2013
2

Méthodes non-paramétriques pour l'apprentissage et la détection de dissimilarité statistique multivariée / Nonparametric methods for learning and detecting multivariate statistical dissimilarity

Lhéritier, Alix 23 November 2015 (has links)
Cette thèse présente trois contributions en lien avec l'apprentissage et la détection de dissimilarité statistique multivariée, problématique d'importance primordiale pour de nombreuses méthodes d'apprentissage utilisées dans un nombre croissant de domaines. La première contribution introduit la notion de taille d'effet multivariée non-paramétrique, éclairant la nature de la dissimilarité détectée entre deux jeux de données, en deux étapes. La première consiste en une décomposition d'une mesure de dissimilarité (divergence de Jensen-Shannon) visant à la localiser dans l'espace ambiant, tandis que la seconde génère un résultat facilement interprétable en termes de grappes de points de forte discrépance et en proximité spatiale. La seconde contribution présente le premier test non-paramétrique d'homogénéité séquentiel, traitant les données issues de deux jeux une à une--au lieu de considérer ceux-ci- in extenso. Le test peut ainsi être arrêté dès qu'une évidence suffisamment forte est observée, offrant une flexibilité accrue tout en garantissant un contrôle del'erreur de type I. Sous certaines conditions, nous établissons aussi que le test a asymptotiquement une probabilité d'erreur de type II tendant vers zéro. La troisième contribution consiste en un test de détection de changement séquentiel basé sur deux fenêtres glissantes sur lesquelles un test d'homogénéité est effectué, avec des garanties sur l'erreur de type I. Notre test a une empreinte mémoire contrôlée et, contrairement à des méthodes de l'état de l'art qui ont aussi un contrôle sur l'erreur de type I, a une complexité en temps constante par observation, le rendant adapté aux flux de données. / In this thesis, we study problems related to learning and detecting multivariate statistical dissimilarity, which are of paramount importance for many statistical learning methods nowadays used in an increasingly number of fields. This thesis makes three contributions related to these problems. The first contribution introduces a notion of multivariate nonparametric effect size shedding light on the nature of the dissimilarity detected between two datasets. Our two step method first decomposes a dissimilarity measure (Jensen-Shannon divergence) aiming at localizing the dissimilarity in the data embedding space, and then proceeds by aggregating points of high discrepancy and in spatial proximity into clusters. The second contribution presents the first sequential nonparametric two-sample test. That is, instead of being given two sets of observations of fixed size, observations can be treated one at a time and, when strongly enough evidence has been found, the test can be stopped, yielding a more flexible procedure while keeping guaranteed type I error control. Additionally, under certain conditions, when the number of observations tends to infinity, the test has a vanishing probability of type II error. The third contribution consists in a sequential change detection test based on two sliding windows on which a two-sample test is performed, with type I error guarantees. Our test has controlled memory footprint and, as opposed to state-of-the-art methods that also provide type I error control, has constant time complexity per observation, which makes our test suitable for streaming data.

Page generated in 0.3492 seconds