• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conformal transformations, curvature, and energy

Ligo, Richard G. 01 May 2017 (has links)
Space curves have a variety of uses within mathematics, and much attention has been paid to calculating quantities related to such objects. The quantities of curvature and energy are of particular interest to us. While the notion of curvature is well-known, the Mobius energy is a much newer concept, having been first defined by Jun O'Hara in the early 1990s. Foundational work on this energy was completed by Freedman, He, and Wang in 1994, with their most important result being the proof of the energy's conformal invariance. While a variety of results have built those of Freedman, He, and Wang, two topics remain largely unexplored: the interaction of curvature and Mobius energy and the generalization of the Mobius energy to curves with a varying thickness. In this thesis, we investigate both of these subjects. We show two fundamental results related to curvature and energy. First, we show that any simple, closed, twice-differentiable curve can be transformed in an energy-preserving and length-preserving way that allows us to make the pointwise curvature arbitrarily large at a point. Next, we prove that the total absolute curvature of a twice-differentiable curve is uniformly bounded with respect to conformal transformations. This is accomplished mainly via an analytic investigation of the effect of inversions on total absolute curvature. In the second half of the thesis, we define a generalization of the Mobius energy for simple curves of varying thickness that we call the "nonuniform energy." We call such curves "weighted knots," and they are defined as the pairing of a curve parametrization and positive, continuous weight function on the same domain. We then calculate the first variation formulas for several different variations of the nonuniform energy. Variations preserving the curve shape and total weight are shown to have no minimizers. Variations that "slide" the weight along the curve are shown to preserve energy is special cases.

Page generated in 0.0889 seconds