Spelling suggestions: "subject:"bitopological photonic"" "subject:"astopological photonic""
1 |
Non-Hermitian and Topological Features of Photonic SystemsMunoz De Las Heras, Alberto 24 February 2022 (has links)
This Thesis is devoted to the study of topological phases of matter in optical platforms, focusing on non-Hermitian systems with gain and losses involving nonreciprocal elements, and fractional quantum Hall liquids where strong interactions play a central role.In the first part we investigated nonlinear Taiji micro-ring resonators in passive and active silicon photonics setups. Such resonators establish a unidirectional coupling between the two whispering-gallery modes circulating in their perimeter. We started by demonstrating that a single nonlinear Taiji resonator coupled to a bus waveguide breaks Lorentz reciprocity. When a saturable gain is added to a single Taiji resonator, a sufficiently strong unidirectional coupling rules out the possibility of lasing in one of the whispering-gallery modes with independence of the type of optical nonlinearity and gain saturation displayed by the material. This can be regarded as a dynamical time-reversal symmetry breaking. This effect is further enhanced by an optical Kerr nonlinearity. We showed that both ring and Taiji resonators can work as optical isolators over a broad frequency band in realistic operating conditions. Our proposal relies on the presence of a strong pump in a single direction: as a consequence four-wave mixing can only couple the pump with small intensity signals propagating in the same direction. The resulting nonreciprocal devices circumvent the restrictions imposed by dynamic reciprocity. We then studied two-dimensional arrays of ring and Taiji resonators realizing quantum spin-Hall topological insulator lasers. The strong unidirectional coupling present in Taiji resonator lattices promotes lasing with a well-defined chirality while considerably improving the slope efficiency and reducing the lasing threshold. Finally, we demonstrated that lasing in a single helical mode can be obtained in quantum spin-Hall lasers of Taiji resonators by exploiting the optical nonlinearity of the material. In the second part of this Thesis we dived into more speculative waters and explored fractional quantum Hall liquids of cold atoms and photons. We proposed strategies to experimentally access the fractional charge and anyonic statistics of the quasihole excitations arising in the bulk of such systems. Heavy impurities introduced inside a fractional quantum Hall droplet will bind quasiholes, forming composite objects that we label as anyonic molecules. Restricting ourselves to molecules formed by one quasihole and a single impurity, we find that the bound quasihole gives a finite contribution to the impurity mass, that we are able to ascertain by considering the first-order correction to the Born-Oppenheimer approximation. The effective charge and statistical parameter of the molecule are given by the sum of those of the impurity and the quasihole, respectively. While the mass and charge of such objects can be directly assessed by imaging the cyclotron orbit described by a single molecule, the anyonic statistics manifest as a rigid shift of the interference fringes in the differential scattering cross section describing a collision between two molecules.
|
2 |
Foundations of topological electrodynamicsTodd F Van Mechelen (9721421) 15 December 2020 (has links)
<div>Over the last decade, Dirac matter has become one of the most prominent fields of research in contemporary material science due to the incredibly rich physics of the Dirac equation. Notable examples are the Dirac cones in graphene, Weyl points in TaAs, and gapless edge states in Bi<sub>2</sub>Te<sub>3</sub>. These unique phases of matter are intimately related to the topological structure of Dirac fermions. However, it remains an open question if the topological structure of Maxwell's equations predicts yet new phases of matter. This thesis will conclusively answer this question.</div><div><br></div><div>Topological electrodynamics is concerned with the geometry of electromagnetic waves in condensed matter. At the microscopic level, photons couple to the dipole-carrying excitations of a material, such as plasmons and excitons, which hybridize to form new normal modes of the system. The interaction between these bosonic oscillators is the origin of temporal and spatial dispersion in optical response functions like the conductivity tensor. Our main achievement is motivating a global interpretation of these response functions, over all frequencies and wavevectors. This theory led us to the conclusion that there are topological invariants associated with the conductivity tensor itself. In this thesis, we show exactly how to calculate these electromagnetic invariants, in both continuum and lattice theories, to identify unique Maxwellian phases of matter. Magnetohydrodynamic electron fluids in strongly-correlated 2D materials like graphene are the first candidates of this new class of topological phase. The fundamental physical mechanism that gives rise to a topological electromagnetic classification is Hall viscosity which adds a nonlocal component to the Hall conductivity. To study the topological electrodynamics, we propose viscous Maxwell-Chern-Simons theory -- a Lagrangian framework that naturally generates the equations of motion, nonlocal Hall response and the boundary conditions. We demonstrate that nonlocal Hall conductivity is the spin-1 photonic equivalent of dispersive mass and induces precession of bulk photonic skyrmions. Nontrivial photonic skyrmions are associated with Dirac monopoles in the bulk momentum space and a singular Berry gauge. A singular gauge occurs when the photonic mass changes sign. Remarkably, the boundary of this medium supports gapless chiral edge states that are spin-1 helically-quantized and satisfy open boundary conditions.</div>
|
3 |
Topological Photonic Lattices / Topologiska fotoniska gitterXu, Zesheng January 2022 (has links)
Topological Photonics is a rapidly growing field which explores the ideas of topological invariants adapted from condensed matter physics to optical systems. Thanks to integrated photonics platforms, the evolution of light in nanoscale photonic lattices can enable direct measurement of topological properties of the band-structure. In this degree project, we study the topological Anderson phase transition in disordered one-dimensional lattices, and probe distinct topological phases in photonic superlattices. In first part, we fabricate photonic lattices with different disorder strength, and observe the topological transition from trivial topological Anderson phase to non-trivial topological Anderson phase as the system disorder is increased. In second part, we focus on probing the Zak phase in photonic superlattices. We fabricate a superlattice system that utilizes either bulk excitation or edge excitation. We identify the trivial and non-trivial Zak phase using two methods: first, through reconstructing the intensity evolution in the edge waveguide, second, through calculating the beam displacement in the case of bulk excitation . In order to study the evolution of the light in the nano-scaled photonic lattices, we develop a novel technique: Loss-Induced Scattering Approach (LISA), which enables high fidelity reconstruction of the photonic state evolving in the lattice. / Topologisk fotonik är ett snabbt växande område som utforskar idéerna om topologiska invarianter anpassade från kondenserad materiens fysik till optiska system. Tack vare integrerade fotonikplattformar kan ljusutvecklingen i fotoniska gitter i nanoskala möjliggöra direkt mätning av topologiska egenskaper hos bandstrukturen. I detta examensarbete studerar vi den topologiska Anderson-fasövergången i oordnade endimensionella gitter, och undersöker distinkta topologiska faser i fotoniska supergitter. I den första delen tillverkar vi fotoniska gitter med olika störningsstyrka och observerar den topologiska övergången från trivial topologisk Anderson-fas till icke-trivial topologisk Anderson-fas när systemstörningen ökar. I den andra delen fokuserar vi på att sondera Zak-fasen i fotoniska supergitter. Vi tillverkar ett supergittersystem som använder antingen bulkexcitering eller kantexcitering. Vi identifierar den triviala och icke-triviala Zak-fasen med två metoder: för det första genom att rekonstruera intensitetsutvecklingen i kantvågledaren, för det andra genom att beräkna strålens förskjutning vid bulkexcitation. För att studera utvecklingen av ljuset i de nanoskalade fotoniska gittren, utvecklar vi en ny teknik: Loss-Induced Scattering Approach (LISA), som möjliggör högtrohetsrekonstruktion av det fotoniska tillståndet som utvecklas i gittret.
|
4 |
Molding the flow of light in rolled-up microtubular cavities and topological photonic latticesSaei Ghareh Naz, Ehsan 03 May 2021 (has links)
The presence of photonic band gap in an arbitrarily shaped photonic structure, particularly structures that are fabricated by exploiting rolled-up nanotechnology, can be understood from the density of optical states. In this thesis, the density of optical states and the local density of optical states in finite-sized photonic structures are calculated using the finite difference time domain method together with a parallelized message passing interface. With this approach, a software package suitable for high-performance computing on multi-platform was published under GNU GPL license.
When light is guided to propagate along a rolled-up thin film, whispering gallery mode resonances can be formed in a microtubular structure. Dynamic probing and tuning via a plasmonic nanoparticle-coated glass tip are investigated to demonstrate the transition from dielectric-dielectric to dielectric-plasmonic coupling in the tubular microcavity. The competition of these two coupling mechanisms allow the tuning of the optical cavity modes towards lower and then higher energies in a single coupling system. Moreover, three dimensionally confined higher order axial modes can be selectively coupled and tuned by the glass tip due to their unique spatial distribution of the optical field along the tube axis. In addition, the interaction between sharp optical cavity modes and broad plasmonic modes supported by silver nanoparticles leads to the occurrence of Fano resonance. In particular, Fano resonances occurring at higher-order axial modes has been observed as well. The experimental results are supported by numerical simulations based on the finite difference time domain method.
In photonic lattice structures, light propagation behavior can be influenced and defined by the photonic band structure. By designing the unit cell with glide mirror symmetry, topologically protected edge states operating in the visible spectral range have been proposed in two dimensional photonic crystals which can be made of feasible materials. Topological phenomena such as unidirectional waveguiding and/or effective zero refractive index are presented. In addition, a scheme to study topological phase transition in a single photonic crystal device is proposed and studied via unevenly stretching photonic lattice. Moreover, a new method is explored to distinguish the topological phase from the bulk modes.
The research presented in this thesis concerns molding the flow of light in specially designed photonic devices for various potential applications. The software package can be used to design and investigate finite-sized photonic structures with an arbitrary shape, which is much faster in terms of computation than other reported techniques and software packages. The rolled-up microcavities can be employed to trap and store light in the way of whispering gallery mode resonances, and the resonant light can be tuned and modulated by a plasmonic nanoparticles-coated glass tip. This research is particularly interesting for optical signal processing, slowing light via Fano resonances, and high sensitive sensing. In addition, the topological photonic crystal design and examination scheme presented in this thesis provide a simplified yet more efficient way to obtain non-trivial topological phase from a tunable photonic crystal that can be verified not only by edge modes but also by bulk modes.:Bibliographic record 1
Abstract 1
LIST OF ABBREVIATIONS and Symbols 3
1 Introduction 9
1.1 Introduction and Motivation 9
1.2 Objectives 11
1.3 Organization of the thesis 12
2 Density of optical states in rolled-up photonic crystals and quasi crystals 15
2.1 Introduction 15
2.1.1 background 17
2.1.2 Infinitely extended ideal photonic crystal 17
2.2 Finite-sized photonic crystal, photonic quasicrystal, and arbitrary photonics structures 20
2.2.1 Numerical algorithm 25
2.2.2 Rolled-up photonic crystals and quasi crystals 30
2.3 Software package 33
2.3.1 Computational performance 33
2.3.2 FPS User interface 35
2.3.3 Detailed tutorial 37
2.3.4 Alternative rolled-up photonic crystals 47
2.3.5 Beyond 3D photonic crystals. 48
2.4 Conclusion 49
3 Rolled-up microesonator 51
3.1 Introduction 51
3.2 Rolled-up microresonators 52
4 Tip-assisted photon-plasmon coupling in three-dimensionally confined microtube cavities 57
4.1 Introduction 57
4.2 Tube and plasmonic particle preparation and characterization 60
4.3 Results and discussion 62
4.4 Axial mode tuning 64
4.5 Fano resonance 65
4.5.1 Background 65
4.5.2 Fano resonance in the tip assisted coupling setup 68
4.6 Conclusion 71
5 Topological photonics 73
5.1 Introduction and motivation 73
5.2 Topological phase transition point 77
5.2.1 Fundamental phase transition point 77
5.2.2 Zero refractive index material 79
5.3 Non-trivial topology in realistic materials 80
6 Topological phase transition in stretchable photonic crystals 85
6.1 Introduction and motivation 85
6.2 SSH model 88
6.3 Photonic crystal 91
6.4 Band structure and end modes of the photonic crystal 99
6.5 Conclusion 101
7 Summary and outlook 103
7.1 Summary 103
7.2 Outlook 104
Bibliography 111
List of figures 127
Publications 133
Acknowledgments 136
Selbständigkeitserklärung 137
Curriculum Vitae 138
|
5 |
Physics of quantum fluids in two-dimensional topological systems / Physique des fluides quantiques dans des systèmes topologiques bidimensionnelsBleu, Olivier 27 September 2018 (has links)
Cette thèse est consacrée à la description de la physique à une particule ainsi qu'à celle de fluides quantiques bosoniques dans des systèmes topologiques. Les deux premiers chapitres sont introductifs. Dans le premier, nous introduisons des éléments de théorie des bandes et les quantités géométriques et topologiques associées : tenseur métrique quantique, courbure de Berry, nombre de Chern. Nous discutons différents modèles et réalisations expérimentales donnant lieu à des effets topologiques. Dans le second chapitre, nous introduisons les condensats de Bose-Einstein ainsi que les excitons-polaritons de cavité.La première partie des résultats originaux discute des phénomènes topologiques à une particule dans des réseaux en nid d'abeilles. Cela permet de comparer deux modèles théoriques qui mènent à l'effet Hall quantique anormal pour les électrons et les photons dû à la présence d'un couplage spin-orbite et d'un champ Zeeman. Nous étudions aussi l'effet Hall quantique de vallée photonique à l'interface entre deux réseaux de cavités avec potentiels alternés opposés.Dans une seconde partie, nous discutons de nouveaux effets qui émergent due à la présence d'un fluide quantique interagissant décrit par l’équation de Gross-Pitaevskii dans ces systèmes. Premièrement, il est montré que les interactions spin anisotropes donnent lieu à des transitions topologiques gouvernées par la densité de particules pour les excitations élémentaires d’un condensat spineur d’exciton-polaritons.Ensuite, nous montrons que les tourbillons quantifiés d'un condensat scalaire dans un système avec effet Hall quantique de vallée, manifestent une propagation chirale le long de l'interface contrairement aux paquets d'ondes linéaires. La direction de propagation de ces derniers est donnée par leur sens de rotation donnant lieu à un transport de pseudospin de vallée protégé topologiquement, analogue à l’effet Hall quantique de spin.Enfin, revenant aux effets géométriques linéaires, nous nous sommes concentrés sur l’effet Hall anormal. Dans ce contexte, nous présentons une correction non-adiabatique aux équations semi-classiques décrivant le mouvement d’un paquet d’ondes qui s’exprime en termes du tenseur géométrique quantique. Nous proposons un protocole expérimental pour mesurer cette quantité dans des systèmes photonique radiatifs. / This thesis is dedicated to the description of both single-particle and bosonic quantum fluid Physics in topological systems. After introductory chapters on these subjects, I first discuss single-particle topological phenomena in honeycomb lattices. This allows to compare two theoretical models leading to quantum anomalous Hall effect for electrons and photons and to discuss the photonic quantum valley Hall effect at the interface between opposite staggered cavity lattices.In a second part, I present some phenomena which emerge due to the interplay of the linear topological effects with the presence of interacting bosonic quantum fluid described by mean-field Gross-Pitaevskii equation. First, I show that the spin-anisotropic interactions lead to density-driven topological transitions for elementary excitations of a condensate loaded in the polariton quantum anomalous Hall model (thermal equilibrium and out-of-equilibrium quasi-resonant excitation configurations). Then, I show that the vortex excitations of a scalar condensate in a quantum valley Hall system, contrary to linear wavepackets, can exhibit a robust chiral propagation along the interface, with direction given by their winding in real space, leading to an analog of quantum spin Hall effect for these non-linear excitations. Finally, coming back to linear geometrical effects, I will focus on the anomalous Hall effect exhibited by an accelerated wavepacket in a two-band system. In this context, I present a non-adiabatic correction to the known semiclassical equations of motion which can be expressed in terms of the quantum geometric tensor elements. We also propose a protocol to directly measure the tensor components in radiative photonic systems.
|
Page generated in 0.0538 seconds