Spelling suggestions: "subject:"1topology error"" "subject:"1topology arror""
1 |
Power System State Estimation Using Phasor Measurement UnitsChen, Jiaxiong 01 January 2013 (has links)
State estimation is widely used as a tool to evaluate the real time power system prevailing conditions. State estimation algorithms could suffer divergence under stressed system conditions. This dissertation first investigates impacts of variations of load levels and topology errors on the convergence property of the commonly used weighted least square (WLS) state estimator. The influence of topology errors on the condition number of the gain matrix in the state estimator is also analyzed. The minimum singular value of gain matrix is proposed to measure the distance between the operating point and state estimation divergence.
To study the impact of the load increment on the convergence property of WLS state estimator, two types of load increment are utilized: one is the load increment of all load buses, and the other is a single load increment. In addition, phasor measurement unit (PMU) measurements are applied in state estimation to verify if they could solve the divergence problem and improve state estimation accuracy.
The dissertation investigates the impacts of variations of line power flow increment and topology errors on convergence property of the WLS state estimator. A simple 3-bus system and the IEEE 118-bus system are used as the test cases to verify the common rule. Furthermore, the simulation results show that adding PMU measurements could generally improve the robustness of state estimation.
Two new approaches for improving the robustness of the state estimation with PMU measurements are proposed. One is the equality-constrained state estimation with PMU measurements, and the other is Hachtel's matrix state estimation with PMU measurements approach. The dissertation also proposed a new heuristic approach for optimal placement of phasor measurement units (PMUs) in power system for improving state estimation accuracy. In the problem of adding PMU measurements into the estimator, two methods are investigated. Method I is to mix PMU measurements with conventional measurements in the estimator, and method II is to add PMU measurements through a post-processing step. These two methods can achieve very similar state estimation results, but method II is a more time-efficient approach which does not modify the existing state estimation software.
|
2 |
Measurement calibration/tuning & topology processing in power system state estimationZhong, Shan 17 February 2005 (has links)
State estimation plays an important role in modern power systems. The errors in the telemetered measurements and the connectivity information of the network will greatly contaminate the estimated system state. This dissertation provides solutions to suppress the influences of these errors.
A two-stage state estimation algorithm has been utilized in topology error identification in the past decade. Chapter II discusses the implementation of this algorithm. A concise substation model is defined for this purpose. A friendly user interface that incorporates the two-stage algorithm into the conventional state estimator is developed.
The performances of the two-stage state estimation algorithms rely on accurate determination of suspect substations. A comprehensive identification procedure is described in chapter III. In order to evaluate the proposed procedure, a topology error library is created. Several identification methods are comparatively tested using this library.
A remote measurement calibration method is presented in chapter IV. The un-calibrated quantities can be related to the true values by the characteristic functions. The conventional state estimation algorithm is modified to include the parameters of these functions. Hence they can be estimated along with the system state variables and used to calibrate the measurements. The measurements taken at different time instants are utilized to minimize the influence of the random errors.
A method for auto tuning of measurement weights in state estimation is described in chapter V. Two alternative ways to estimate the measurement random error variances are discussed. They are both tested on simulation data generated based on IEEE systems. Their performances are compared. A comprehensive solution, which contains an initialization process and a recursively updating process, is presented.
Chapter VI investigates the errors introduced in the positive sequence state estimation due to the usual assumptions of having fully balanced bus loads/generations and continuously transposed transmission lines. Several tests are conducted using different assumptions regarding the availability of single and multi-phase measurements. It is demonstrated that incomplete metering of three-phase system quantities may lead to significant errors in the positive sequence state estimates for certain cases. A novel sequence domain three-phase state estimation algorithm is proposed to solve this problem.
|
Page generated in 0.0355 seconds