• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lightning polarity over soil moisture boundaries during three tornadic outbreaks (1990-95)

Berry, Douglas P. January 2005 (has links)
This study presents an overview of lightning formation and the correlations seen with soil moisture slope along with potential of tornadic thunderstorms. Three moisture classes (large, marginal, small) were created using soil moisture observed during three tornado outbreaks (June-02-1990, April-26-1994, May-13-1995) over the Midwest. Chi-square, Nearest Neighbor, and Point Density calculations were performed and suggest that lightning polarity/frequency shift between soil moisture classes at a = .01. Using lightning characteristics in the thunderstorm lifecycle, one is able to evaluate relative tornadogenesis areas within moisture classes some 8-10 hours in advance. Tornadogenesis points fell within expected areas indicating that borders between marginal and small moisture classes are approximate locations of stage change (mature to dissipation) of the thunderstorm lifecycle. Results are intended to be used as a tool that helps verify situations that are more likely to be tornadic when observing real-time lightning data from thunderstorms crossing significant soil moisture boundaries. / Department of Geography
2

Numerical study of a tornado-like vortex in a supercell storm

Santos, Jorge Ruben. January 2008 (has links)
Recent observations and numerical simulations have significantly improved our understanding of tornadic storms. However, our knowledge of tornado-genesis remains rudimentary. Necessary atmospheric conditions favoring the formation of tornadoes in supercell storms are known, but sufficient conditions remain elusive. The underlying reason is that the processes involved in environment-storm and storm-tornado interactions are not fully understood, as numerical models in the past lacked sufficient resolution to resolve these interactions satisfactorily. In this thesis, an attempt is made to fill this gap by performing a multi-grid high resolution simulation of a supercell storm spawning a tornado-like vortex. Four grids, with grid sizes of 600 m, 200 m, 70 m, and 30 m, are used to allow explicit simulation of storm-tornado interactions. Diagnostic analysis of the modeling results allows an investigation of the origin of rotation at both the storm scale and the tornado scale. / The simulation results showed that the origin of vertical rotation at storm scale during the early stage of storm development is due to tilting of the horizontal vorticity in the environment. This so called mesocyclone then further strengthens by the mechanism of stretching and Dynamic Pipe Effect and descends downwards. During the time of mesocyclone intensification, incipient surface vertical vortices form along the outflow boundary created by the rear flank downdraft due to the process of horizontal shear instability. / One of the surface vortices experiences an initial exponential growth in its vorticity by interacting with the descending mesocyclone and merging with multiple smaller satellite vortices. The tornado-like vortex (TLV) which forms has a maximum horizontal wind of 103 m s-1 and a minimum central pressure of 927 hPa. Vorticity budgets of the mesocyclone and the TLV are computed to assess quantitatively the importance of various processes for rotation. / Sensitivity experiments were also performed to determine the effect of varying the environmental conditions on the mesocyclone and surface vorticity. It was found that as the low-level vertical shear of the environmental wind increases, the mesocyclone intensifies and favors the intensification of near surface vorticity. The presence of drier layers in the upper and middle troposphere eventually produces a weaker mesocyclone and weaker outflow boundaries. On the other hand, inclusion of the ice phase processes produces a stronger mesocyclone and more intense outflow boundaries to enhance the intensification of near surface vorticity.
3

Numerical study of a tornado-like vortex in a supercell storm

Santos, Jorge Ruben. January 2008 (has links)
No description available.

Page generated in 0.0629 seconds