• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 2
  • 1
  • Tagged with
  • 25
  • 13
  • 11
  • 11
  • 10
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A morphological and taxonomic study of the nearctic species of the moth genus Apotomis Hbn. (Lepidoptera-tortricidae).

Adamski, David 01 January 1981 (has links) (PDF)
No description available.
2

Aspects of archipine evolution (Lepidoptera: Tortricidae)

Dombroskie, Jason Unknown Date
No description available.
3

Morphological and molecular studies of tortricid moths of economic importance to the South African fruit industry /

Timm, Alicia Eva. January 2005 (has links)
Dissertation (PhD)--University of Stellenbosch, 2005. / Bibliography. Also available via the Internet.
4

The biology of Rhyacionia subtropica Miller (Lepidoptera: Olethreutidae)

McGraw, James Robert, January 1975 (has links)
Thesis (Ph. D.)--University of Florida, 1975. / Description based on print version record. Typescript. Vita. Includes bibliographical references (leaves 140-146).
5

Evaluation of entomopathogenic fungi (ascomycota) for the control of cydia pomonella (lepidoptera: tortricidae)

Abaajeh, Asomiba Rita January 2014 (has links)
A THESIS PRESENTED TO CAPE PENINSULA UNIVERSITY OF TECHNOLOGY IN FULFILMENT OF THE REQUIREMENTS FOR THE MASTERS OF TECHNOLOGY DEGREE IN HORTICULTURE. IN THE FACULTY OF APPLIED SCIENCES 2014 / Codling moth ([Cydia pomonella (Lepidoptera: Tortricidae]) infest pomes resulting in high production losses to fruit farmers in South Africa and globally. Many farmers are adopting biocontrol methods including the use of entomopathogens as alternatives to synthetic insecticides for sustainable management of Arthropod pests. Research activities on screening and application of entomopathogenic fungi (EPF) have intensified in recent years. This study was carried out to isolate and identify virulent indigenous entomopathogenic fungal strains from soils of selected locations in the Western Cape region of South Africa that are pathogenic against codling moth (Cydia pomonella (Linn) [Lepidoptera: Totricidae]) and to evaluate the possiblility of combining semiochemicals and fungal inoculums in a simulated attract-and-fungus contamination system for codling moth control. Soil samples were collected from 10 locations in the Western Cape, South Africa for the isolation of entomopathogenic fungi (EPF) by baiting the soil samples with 5th instar larvae of codling moths. Fungal strains were identified and characterized using light microscopy and DNA analysis (internal transcribed spacer region) and elongation factor 1-α (EF 1-α) genes of fungal cultures. Thirty-nine (39) isolates belonging to six species were obtained; Purpureocillium lilacinum (8 isolates), Fusarium oxysporum (five isolates), Fusarium polyphialidicum (two isolates), Beauveria pseudo-bassiana (one isolate), Aspergillus flavus (three isolates) and Metarhizium robertii (20 isolates). Generally, M. robertsii was the most frequently encountered species representing 51% of the total number of isolates collected from the soil samples. This is the first report of the isolation of M. robertsii in southern Africa. A screening test to identify the most virulent fungal strains against codling moth was carried out on 39 isolates by immersing 5th instar larvae of C. pomonella into aqueous spore suspension 1 x 108 conidia ml-1. Mortality data from the immersion bioassay indicated that the 39 fungal isolates were pathogenic against fifth instar larvae of codling moth inducing 47-85% insect mortality at an infective concentration of 1 x108 spores’ ml-1, 5 days post-treatment. Two fungal strains MTL151 and GW461 induced over 85% larval mortality and were selected for further evaluations. The effect of MTL151 and GW461 on egg hatchability of 0-day old eggs was evaluated by exposing freshly laid eggs on wax papers that were pre-treated with fungal spores ranging from 103 -108 spores/ml. Egg hatchability reduced significantly from 93-71% (GW461) and 95-66% (MTL151) as spore concentration increases from1 x 103 to 1 x 108 spores ml-1, respectively. The highest spore concentration significantly inhibited egg hatchability resulting in lower egg hatchability compared to that obtained with the cypermethrin containing commercial insecticide (Fruitfly [registered by Kombat (PTY) Ltd] ) tested at the recommended dose of 0.25 ml/250 ml of water. The potential of the two M. robertsii strains to protect apples from infestation by codling moth neonates was assessed in an apple fruit bioassay under laboratory and field bioassay. Codling moth neonates were exposed to apples that were sprayed topically with varied conidia concentrations (103 - 108 sporesml-1). The mean number of participating apple fruits having developing/developed larvae in the core/flesh significantly reduced from 5.3 to 1 and 7.6 to 1 for MTL151 and GW461, respectively as spore concentrations increased from 1 x103 to 1x 108 spores/ml-1. A concurrent decrease in apple fruit rot as conidia concentration increased was observed. Up to 90% of apples treated with 1 x 108 spores/ml-1 had no larva present in their cores and this result compared favourably with the commercial pesticide (Fruitfly) used at a recommended dose of 0.25g/250 ml of water. No significant difference was found between the EC50 values of 1.2 x 103 (CI=1.2 x 102 -1 x 105) (MTL151) and 1.1 x 105 (CI =7 x103 – 5.6x105) (GW461) spores ml-1. However, neither the two M. robertsii strains nor the insecticide deterred the neonates from feeding on the surface of the fruits. The attraction responses of male and female adult codling moths to butyl hexanoate and codlemone blend; butyl hexanoate (0.025 mg / ml of hexane) and codlemone (0.1 mg / ml of hexane) in a ratio of 1:1 (0.5 ml: 0.5 ml from both solutions) were assessed in a one-choice wind tunnel olfactory bioassay during scoto-phase in the absence of fungal spores. The blend attracted more females (69%) than males (66.7%), however these responses were not significantly different (P > 0.5). The prospect of integrated use of entomopathogenic fungal conidia and semiochemical blend for control of C. pomonella adults was assessed in a wind tunnel containing the combo lure and M. robertsii (MTL151) spores formulated as a powder (250 mg) or aqueous spore suspension (3.1 x 108 spores m-1 ± 7 x 102 sporesml-1). Insect attraction, mean number of spores picked per insect and insect mortality was assessed. No significant difference (P > 0.5) was observed in the number of inoculi picked by unsexed adult moths in the two conidial formulations tested; spore powder (3.1 x 103 ± 1 x 103 spores ml-1) and aqueous spore suspension (3.1 x 103 ± 7 x 102 spores ml-1). No mortality was recorded among fungus or control-treated moths. Both M. robertsii (MTL151) spore formulations did not significantly (P > 0.05) affect the attraction responses of the insects to the combo lure; powder (73.3 ± 3.3%) and aqueous (68.6 ± 2.9%) compared to the control treatment (without the fungal spores) (70 ± 0.5 %). These results suggest that the fungus did not inhibit the attraction of moths by semiochemicals. Despite the successful autoinoculation of moths with fungal spores, the level of contamination was too low to induce mortality among adult moths. This study opens up opportunities for research in attract-and-fungus contamination delivery systems. This is the first report of the occurrence of M. robertsii in the southern Africa. Further, results from this study indicates that C. pomonella is susceptible to indigenous South African entomopathogenic fungi and 2 indigenous M. anisopliae strains, MTL151 and GW461 provided adequate protections against codling moth larval infestations of apple fruits. Future research endeavours to improve adherence of conidia to adult moth cuticle is recommended. Key words: Entomopathogenic fungi (EPF), codling moth, B. pseudobassiana, M. robertsii, larvae, pathogenicity and biological control, coddlemone, butyl hexanoate, attraction, semiochemicals.
6

Gene expression analysis of Thaumatotibia leucotreta in response to the Cryptophlebia leucotreta granulovirus

Ridgeway, Jaryd Antony January 2015 (has links)
Gene expression studies provide baseline information on the interactions of insects with their environment. Despite the importance of this information, limited gene expression data are available for most insect pests, including the family Tortricidae (Lepidoptera), which includes Thaumatotibia leucotreta (Meyr), an important agricultural pest in Africa. Because T. leucotreta can be controlled successfully by a granulovirus, this system is a good model for exploring insect-virus susceptibility. The main aim of this study was to investigate gene expression of T. leucotreta in responce to virus infection. However, before pursuing this aim, two objectives required completion. First, the most suitable RNA extraction method for insects needed to be determined and second, the most suitable reference genes for qPCR for Tortricidae pests needed to be identified. Once these objectives were accomplished, the response of T. leucotreta to its granulovirus was evaluated at different temperatures and points after infection.Four RNA extraction methods, the RNeasy® Mini Kit, SV Total RNA isolation system, TRIzol® reagent, and a CTAB-based method, were compared using two beetle and two moth species, including T. leucotreta. The quality of extracted RNA was similar for all four species for all extraction methods. Based on several criteria, the best RNA extraction method was the SV Total RNA isolation system. Six candidate reference genes were evaluated for qPCR using different tissue types of T. leucotreta and two other Tortricidae pests. Additionally, reference genes were evaluated for T. leucotreta with and without its granulovirus at different temperatures. Reference gene stability was found to be dependent on species and tissue type. Overall the most suitable combination of reference genes for T. leucotreta were α-actin, arginine kinase and elongation factor 1-α.Gene expression of T. leucotreta in response to granulovirus infection at different temperatures and intervals after infection was evaluated by qPCR using 13 target genes associated with the infection process. Most genes were down-regulated after 24 and 48 h.p.i. However, after 72 h.p.i most genes were up-regulated. The same trend was observed at different temperatures, where most genes were down-regulated at 15°C and 25°C but up-regulated at 35°C. These results show that there is a dynamic gene expression response in T. leucotreta due to granulovirus infection under different conditions. Not only do these findings provide insight into the control of this tortricid pest, they also contribute further to our knowledge of insect-virus interactions.
7

Agathis bishopi (Nixon) (Hymenoptera: braconidae) : its biology and usefulness as a biological control agent for false codling moth (FCM), Thaumatotibia leucotreta (Meyrick) (Lepidoptera: tortricidae), on citrus /

Gendall, Kierryn Leigh. January 2007 (has links)
Thesis (M.Sc. (Zoology & Entomology)) - Rhodes University, 2008.
8

Druhové spektrum pupenových obalečů (Tortricidae) na vybraných lokalitách jižní Moravy

Hrudová, Eva January 2004 (has links)
No description available.
9

Bionomics of Platynota flavedana Clemens and P. idaeusalis (Walker)(Lepidoptera: Tortricidae) in Virginia apple orchards

David, Paul Joseph January 1985 (has links)
The effects of pheromone trap placement on male moth catches of both species were studied. For P. flavedana, traps hung at 2.1 and 3.0 meters captured the greatest number of moths. Trap heights of 1.2, 2.1, and 3.0 meters caught the greatest number of P. idaeusalis moths. The outside-the-canopy trap position captured more P. flavedana moths, while the within-canopy trap location caught the greatest number of P. idaeusalis moths. Traps placed in the west portion of the tree captured the greatest number of P. flavedana moths. P. idaeusalis moth catches were not influenced by compass quadrants. Trap design and pheromone dispenser and rate influenced trap catches of P. flavedana. Development of P. flavedana and P. idaeusalis on a meridic diet was observed at constant temperatures in the laboratory. Lower developmental threshold values for egg, larval, and pupal stages of P. flavedana were: 10.6, 8.6, 9.0°C, respectively. Lower developmental threshold values of 9.7, 7.0, and 8.5°C were estimated for P. idaeusalis egg, larval, and pupal stages, respectively. An average of 101.5 °D<sub>10.6’</sub>, 379.6 °D<sub>8.6’</sub>, and 126.0 °D<sub>9.0’</sub> were required for development of egg, larval, and pupal stages of P. flavedana, respectively. P. idaeusalis required 104.7 °D<sub>9.7’</sub>, 442.7 °D<sub>7.0’</sub>, and 132.2 °D<sub>8.5’</sub> to complete development in the egg, larval, and pupal stages, respectively. Differences in rate of development were observed between food sources for both species. Within-tree spatial distribution of egg masses and fruit damage resulting from larval feeding for both species was investigated. P. flavedana egg masses were mostly found in the southern portion of the tree below 1.8 meters. Egg masses of P. idaeusalis were observed in greatest numbers in the southern and eastern quadrants of the tree below 2.8 meters. Fruit damage caused by larvae of both species was greatest in the lower portion of the tree. Wind dispersal of first-instar larvae between trees is believed to have influenced fruit damage distribution. The seasonal activity of P. flavedana and P. idaeusalis was monitored. Degree-day accumulations for first moth catch, first and peak egg deposition, and first and peak egg hatch of both generations are presented. / Ph. D.
10

Morphological and molecular studies of tortricid moths of economic importance to the South African fruit industry

Timm, Alicia Eva 12 1900 (has links)
Thesis (PhD (Agric) (Conservation Ecology and Entomology))--University of Stellenbosch, 2005. / Six tortricid species are of major economic importance to the South African fruit industry. They are the codling moth Cydia pomonella, the oriental fruit moth Grapholita molesta, the false codling moth Thaumatotibia leucotreta, the macadamia nut borer T. batrachopa, the litchi moth Cryptophlebia peltastica and the carnation worm Epichoristodes acerbella. For phytosanitary purposes and to aid the management of population levels of the aforementioned species, their identities at species and population level were investigated using morphological and molecular genetic techniques. Morphological characteristics were used to distinguish and differentiate between the final instar larvae and pupae of the six species. For this purpose the morphology of the final instar larvae and pupae of the Afrotropical species T. leucotreta, T. batrachopa, Cr. peltastica and E. acerbella was described and illustrated using line drawings and scanning electron micrographs. Taxonomic characters found to be useful for the identification of the larvae were the presence and structure of the anal comb and the number and arrangement of crochets on the prolegs. The pupae could be distinguished based on the presence or absence of a distinct cremaster, the shape of the spiracle, the position of the setae on the anal rise, the structure of the mouthparts and the length of the procoxa in relation to that of the protarsus. These characters were used to develop keys to distinguish between the tortricid species occurring on tropical and subtropical fruit (T. leucotreta, T. batrachopa and Cr. peltastica) and deciduous fruit (E. acerbella, C. pomonella, G. molesta and T. leucotreta). At population level, molecular techniques were employed to compare geographic populations of each of the six species. Amplified fragment length polymorphism (AFLP) analysis with five selective primer pairs was used to investigate genetic diversity. In addition, host populations of species were compared where relevant. No evidence was found to suggest that populations from different hosts were genetically differentiated. However, geographic populations were found to be genetically distinct in each of the six species, with extensive genetic divergence apparent over local geographic scales and significantly high estimates of population differentiation ranging between Gst = 0.2625 and 0.3778. Factors influencing the genetic population structure of the six species were investigated by comparing the amount and distribution of genetic variation between oligophagous and polyphagous species as well as introduced and native species. Results indicated that host range and population history did not have a major effect on population genetic structure. It was therefore suggested that other factors such as limited dispersal were responsible for the extensive genetic divergence observed between geographic populations of each of the six tortricid species. These results should be incorporated into existing pest management programs and taken into consideration when designing new control strategies. This is the first report of its kind to identify, with a high level of accuracy, the aforementioned tortricids and the first to determine the population genetic structure of these species.

Page generated in 0.0345 seconds