• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • Tagged with
  • 11
  • 11
  • 11
  • 11
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies of colloidal interactions

Haughey, Daniel A. January 1995 (has links)
No description available.
2

Modeling scattered intensity from microspheres in evanescent field

Shah, Suhani Kiran 10 October 2008 (has links)
The technique of single particle Total Internal Reflection Microscopy (TIRM) has been used to study the scattering intensity from levitated microspheres. TIRM can be used to monitor the separation between microscopic spheres immersed in liquid (water in our case) and a surface with nm resolution. In the technique, microspheres scatter light when the evanescent waves are incident upon them. The intensity of the scattered light is directly related to the height above the surface and allows determination of the height. From the separation distance histograms, the interaction between the microsphere and interface may be characterized with a force resolution in the range of 0.01 picoNewtons. Such a system can be applied to the measurement of biomolecular interactions biomolecules attached to the microsphere and the surface. The intensity and scattering pattern of this light has been modeled using a modified Mie theory which accounts for the evanescent nature of the incident light. Diffusing Colloidal Probe Microscopy (DCPM) is an extension of the TIRM technique that simultaneously monitors multiple microsphere probes. The use of multiple probes introduces the issue of probe polydispersity. When measured at the surface, a variation in scattered light intensity of nearly one order of magnitude has been observed from a purchased microsphere sample. Thus the polydisperse collection of microspheres adds significant complexity to the scattered light signal. It is hypothesized that the dependence of the total scattered light intensity on microsphere size accounts for the scattered intensity distribution in a polydisperse microsphere sample. Understanding this variation in the scattered light with microsphere size will allow improved characterization of the microsphere/surface separation. Additionally, larger microspheres have the ability to resonantly confine light and produce spectrally narrow Whispering Gallery Modes (WGMs). It is hypothesized that WGMs may be excited in microspheres with the DCPM system. These modes may be used as a refractometric biosensor with high sensitivity to local refractive index changes on the surface of the microsphere. This research involves modeling scattered intensity distributions for polydispersed collections of microspheres based on modified Mie theory. The theoretical results are compared to experimentally obtained results and found to qualitatively explain the scattered light intensity distribution in a multiple probe DCPM system. This is an important result suggesting that microsphere size variation plays a major role in determining the distribution of scattered intensity in multiple microsphere probe systems. This work also suggests that it may be possible to excite such WGMs in a DCPM system. The introduction of WGMs would enable refractometric biosensing in such evanescent mode systems.
3

Evanescent wave and video microscopy methods for directly measuring interactions between surface-immobilized biomolecules

Everett, William Neil 15 May 2009 (has links)
Spatial and temporal tracking of passively diffusing functionalized colloids continues to be an improving and auspicious approach to measuring weak specific and non-specific biomolecular interactions. Evidence of this is given by the recent increase in published studies involving the development and implementation of these methods. The primary aim of the work presented in this dissertation was to modify and optimize video microscopy (VM) and total internal reflection microscopy (TIRM) methods to permit the collection of equilibrium binding and sampling data from interaction of surface-immobilized biomolecules. Supported lipid bilayers were utilized as model systems for functionalizing colloid and wall surfaces. Preliminary results measuring calcium-specific protein-protein interactions between surface immobilized cadherin fragments demonstrate the potential utility of this experimental system and these methods. Additionally, quantum dot-modified colloids were synthesized and evanescent wave-excited luminescence from these particles was used to construct potential energy profiles. Results from this work demonstrate that colloids can be used as ultra-sensitive probes of equilibrium interactions between biomolecules, and specialized probes, such as those modified with quantum dots, could be used in a spectral multiplexing mode to simultaneously monitor multiple interactions.
4

Modeling scattered intensity from microspheres in evanescent field

Shah, Suhani Kiran 15 May 2009 (has links)
The technique of single particle Total Internal Reflection Microscopy (TIRM) has been used to study the scattering intensity from levitated microspheres. TIRM can be used to monitor the separation between microscopic spheres immersed in liquid (water in our case) and a surface with nm resolution. In the technique, microspheres scatter light when the evanescent waves are incident upon them. The intensity of the scattered light is directly related to the height above the surface and allows determination of the height. From the separation distance histograms, the interaction between the microsphere and interface may be characterized with a force resolution in the range of 0.01 picoNewtons. Such a system can be applied to the measurement of biomolecular interactions biomolecules attached to the microsphere and the surface. The intensity and scattering pattern of this light has been modeled using a modified Mie theory which accounts for the evanescent nature of the incident light. Diffusing Colloidal Probe Microscopy (DCPM) is an extension of the TIRM technique that simultaneously monitors multiple microsphere probes. The use of multiple probes introduces the issue of probe polydispersity. When measured at the surface, a variation in scattered light intensity of nearly one order of magnitude has been observed from a purchased microsphere sample. Thus the polydisperse collection of microspheres adds significant complexity to the scattered light signal. It is hypothesized that the dependence of the total scattered light intensity on microsphere size accounts for the scattered intensity distribution in a polydisperse microsphere sample. Understanding this variation in the scattered light with microsphere size will allow improved characterization of the microsphere/surface separation. Additionally, larger microspheres have the ability to resonantly confine light and produce spectrally narrow Whispering Gallery Modes (WGMs). It is hypothesized that WGMs may be excited in microspheres with the DCPM system. These modes may be used as a refractometric biosensor with high sensitivity to local refractive index changes on the surface of the microsphere. This research involves modeling scattered intensity distributions for polydispersed collections of microspheres based on modified Mie theory. The theoretical results are compared to experimentally obtained results and found to qualitatively explain the scattered light intensity distribution in a multiple probe DCPM system. This is an important result suggesting that microsphere size variation plays a major role in determining the distribution of scattered intensity in multiple microsphere probe systems. This work also suggests that it may be possible to excite such WGMs in a DCPM system. The introduction of WGMs would enable refractometric biosensing in such evanescent mode systems.
5

Modeling scattered intensity from microspheres in evanescent field

Shah, Suhani Kiran 15 May 2009 (has links)
The technique of single particle Total Internal Reflection Microscopy (TIRM) has been used to study the scattering intensity from levitated microspheres. TIRM can be used to monitor the separation between microscopic spheres immersed in liquid (water in our case) and a surface with nm resolution. In the technique, microspheres scatter light when the evanescent waves are incident upon them. The intensity of the scattered light is directly related to the height above the surface and allows determination of the height. From the separation distance histograms, the interaction between the microsphere and interface may be characterized with a force resolution in the range of 0.01 picoNewtons. Such a system can be applied to the measurement of biomolecular interactions biomolecules attached to the microsphere and the surface. The intensity and scattering pattern of this light has been modeled using a modified Mie theory which accounts for the evanescent nature of the incident light. Diffusing Colloidal Probe Microscopy (DCPM) is an extension of the TIRM technique that simultaneously monitors multiple microsphere probes. The use of multiple probes introduces the issue of probe polydispersity. When measured at the surface, a variation in scattered light intensity of nearly one order of magnitude has been observed from a purchased microsphere sample. Thus the polydisperse collection of microspheres adds significant complexity to the scattered light signal. It is hypothesized that the dependence of the total scattered light intensity on microsphere size accounts for the scattered intensity distribution in a polydisperse microsphere sample. Understanding this variation in the scattered light with microsphere size will allow improved characterization of the microsphere/surface separation. Additionally, larger microspheres have the ability to resonantly confine light and produce spectrally narrow Whispering Gallery Modes (WGMs). It is hypothesized that WGMs may be excited in microspheres with the DCPM system. These modes may be used as a refractometric biosensor with high sensitivity to local refractive index changes on the surface of the microsphere. This research involves modeling scattered intensity distributions for polydispersed collections of microspheres based on modified Mie theory. The theoretical results are compared to experimentally obtained results and found to qualitatively explain the scattered light intensity distribution in a multiple probe DCPM system. This is an important result suggesting that microsphere size variation plays a major role in determining the distribution of scattered intensity in multiple microsphere probe systems. This work also suggests that it may be possible to excite such WGMs in a DCPM system. The introduction of WGMs would enable refractometric biosensing in such evanescent mode systems.
6

Evanescent wave and video microscopy methods for directly measuring interactions between surface-immobilized biomolecules

Everett, William Neil 15 May 2009 (has links)
Spatial and temporal tracking of passively diffusing functionalized colloids continues to be an improving and auspicious approach to measuring weak specific and non-specific biomolecular interactions. Evidence of this is given by the recent increase in published studies involving the development and implementation of these methods. The primary aim of the work presented in this dissertation was to modify and optimize video microscopy (VM) and total internal reflection microscopy (TIRM) methods to permit the collection of equilibrium binding and sampling data from interaction of surface-immobilized biomolecules. Supported lipid bilayers were utilized as model systems for functionalizing colloid and wall surfaces. Preliminary results measuring calcium-specific protein-protein interactions between surface immobilized cadherin fragments demonstrate the potential utility of this experimental system and these methods. Additionally, quantum dot-modified colloids were synthesized and evanescent wave-excited luminescence from these particles was used to construct potential energy profiles. Results from this work demonstrate that colloids can be used as ultra-sensitive probes of equilibrium interactions between biomolecules, and specialized probes, such as those modified with quantum dots, could be used in a spectral multiplexing mode to simultaneously monitor multiple interactions.
7

Modeling scattered intensity from microspheres in evanescent field

Shah, Suhani Kiran 10 October 2008 (has links)
The technique of single particle Total Internal Reflection Microscopy (TIRM) has been used to study the scattering intensity from levitated microspheres. TIRM can be used to monitor the separation between microscopic spheres immersed in liquid (water in our case) and a surface with nm resolution. In the technique, microspheres scatter light when the evanescent waves are incident upon them. The intensity of the scattered light is directly related to the height above the surface and allows determination of the height. From the separation distance histograms, the interaction between the microsphere and interface may be characterized with a force resolution in the range of 0.01 picoNewtons. Such a system can be applied to the measurement of biomolecular interactions biomolecules attached to the microsphere and the surface. The intensity and scattering pattern of this light has been modeled using a modified Mie theory which accounts for the evanescent nature of the incident light. Diffusing Colloidal Probe Microscopy (DCPM) is an extension of the TIRM technique that simultaneously monitors multiple microsphere probes. The use of multiple probes introduces the issue of probe polydispersity. When measured at the surface, a variation in scattered light intensity of nearly one order of magnitude has been observed from a purchased microsphere sample. Thus the polydisperse collection of microspheres adds significant complexity to the scattered light signal. It is hypothesized that the dependence of the total scattered light intensity on microsphere size accounts for the scattered intensity distribution in a polydisperse microsphere sample. Understanding this variation in the scattered light with microsphere size will allow improved characterization of the microsphere/surface separation. Additionally, larger microspheres have the ability to resonantly confine light and produce spectrally narrow Whispering Gallery Modes (WGMs). It is hypothesized that WGMs may be excited in microspheres with the DCPM system. These modes may be used as a refractometric biosensor with high sensitivity to local refractive index changes on the surface of the microsphere. This research involves modeling scattered intensity distributions for polydispersed collections of microspheres based on modified Mie theory. The theoretical results are compared to experimentally obtained results and found to qualitatively explain the scattered light intensity distribution in a multiple probe DCPM system. This is an important result suggesting that microsphere size variation plays a major role in determining the distribution of scattered intensity in multiple microsphere probe systems. This work also suggests that it may be possible to excite such WGMs in a DCPM system. The introduction of WGMs would enable refractometric biosensing in such evanescent mode systems.
8

Effect of Antimicrobial Agents on MinD Protein Oscillations in Escherichia coli

Kelly, Corey 18 November 2011 (has links)
The Min protein system regulates cell division in the bacterium Escherichia coli. The protein MinD undergoes a pole-to-pole oscillation, antagonizing formation of the division septum at the cell poles, thereby confining the septum formation to the mid-cell. The MinD oscillation period is 40 s at room temperature in healthy cells, but has been shown to be sensitive to stress on the cell. By fluorescently labeling MinD with green fluorescent protein (GFP), we are able to measure the MinD oscillation period as an in situ metric of cell viability using high resolution total internal reflection fluorescence (TIRF) microscopy. We have made several improvements to the method by which we measure and analyse the MinD oscillation period. A microscopy flow cell was designed and constructed and it provides temperature control and stability to a precision of 0.05 °C in addition to allowing controlled addition of bacterial cells and reagents of interest to the imaging region of the flow cell. This flow cell enabled us to make a precise measurement of the temperature dependence of the MinD oscillation period, for which we observed an Arrhenius dependence with an activation energy of 11.8 kcal/mol. We developed a centroid-tracking method, performed in a custom MATLAB program, to extract the values of the MinD oscillation periods from our time series of TIRF microscopy images. We measured the effect on the MinD oscillation period of exposure to the cationic antimicrobial peptide polymyxin B (PMB) and the related compound polymyxin B nonapeptide (PMBN), which does not have antimicrobial activity. Exposure to PMB resulted in a 60% increase in the average MinD oscillation period tau, whereas exposure to PMBN resulted in an 20% decrease in tau. After exposure to PMB and PMBN, we measured the Arrhenius temperature dependence of the MinD temperature dependence and calculated the associated activation energy Ea. We found that exposure to PMB resulted in a 40% increase in Ea, whereas exposure to PMBN did not significantly change the value of Ea. These results indicate that careful measurements of the MinD oscillation can yield information that can be helpful in evaluating the mechanism of action of antimicrobial compounds. / Natural Sciences and Engineering Research Council
9

DYNAMICS AND SURFACE FORCES EXPERIENCED BY AN ANISOTROPIC COLLOIDAL PARTICLE NEAR A BOUNDARY

Rashidi, Aidin 08 May 2020 (has links)
No description available.
10

Direct measurements of ensemble particle and surface interactions on homogeneous and patterned substrates

Wu, Hung-Jen 16 August 2006 (has links)
In this dissertation, we describe a novel method that we call Diffusing Colloidal Probe Microscopy (DCPM), which integrates Total Internal Reflection Microscopy (TIRM) and Video Microscopy (VM) methods to monitor three dimensional trajectories in colloidal ensembles levitated above macroscopic surfaces. TIRM and VM are well established optical microscopy techniques for measuring normal and lateral colloidal excursions near macroscopic planar surfaces. The interactions between particle-particle and particle-substrate in colloidal interfacial systems are interpreted by statistical analyses from distributions of colloidal particles; dynamic properties of colloidal assembly are also determined from particle trajectories. Our studies show that DCPM is able to detect many particle-surface interactions simultaneously and provides an ensemble average measurement of particle-surface interactions on a homogeneous surface to allow direct comparison of distributed and average properties. A benefit of ensemble averaging of many particles is the diminished need for time averaging, which can produce orders of magnitude faster measurement times at higher interfacial particle concentrations. The statistical analyses (Ornstein- Zernike and three dimensional Monte Carlo analyses) are used to obtain particle-particle interactions from lateral distribution functions and to understand the role of nonuniformities in interfacial colloidal systems. An inconsistent finding is the observation of an anomalous long range particle-particle attraction and recovery of the expected DLVO particle-wall interactions for all concentrations examined. The possible influence of charge heterogeneity and particle size polydispersity on measured distribution functions is discussed in regard to inconsistent particle-wall and particle-particle potentials. In the final part of this research, the ability of DCPM is demonstrated to map potential energy landscapes on patterned surfaces by monitoring interactions between diffusing colloidal probes with Au pattern features. Absolute separation is obtained from theoretical fits to measured potential energy profiles and direct measurement by sticking silica colloids to Au surfaces via electrophoretic deposition. Initial results indicate that, as colloidal probe and pattern feature dimensions become comparable, measured potential energy profiles suffer some distortion due to the increased probability of probes interacting with surfaces at the edges of adjacent pattern features. Measurements of lateral diffusion via analysis of mean square displacements also indicated lateral diffusion coefficients in excellent agreement with rigorous theoretical predictions.

Page generated in 0.1042 seconds