• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MODELING OF MECHANICAL BEHAVIOUR OF ANISOTROPIC ROCKS

Rezapour, Aida 11 1900 (has links)
The natural soils and sedimentary rocks are typically formed by deposition and progressive consolidation of marine sediments. Consequently, they are characterized by the presence of closely spaced bedding planes, resulting in anisotropy in their mechanical behaviour. Among anisotropic rocks, the group of sedimentary rocks known as shales is of a particular interest as it is often the host rock in nuclear waste storage and oil industry. The Tournemire shales are anisotropic in terms of deformability and the failure mode, which means that complex constitutive models should be used to describe their mechanical response. In this thesis a pragmatic methodology based on the notion of a microstructure tensor, as suggested by Pietruszczak and Mroz (2001), has been employed for the description of orientation dependent characteristics of Tournemire shale. This has been combined with a plasticity framework that incorporates an anisotropic deviatoric hardening. The formulation requires identification of several parameters including strength descriptors associated with the failure criterion and constants that are involved in describing the anisotropy and strain hardening. All the material functions/parameters have been identified here based on the experimental results reported by Niandou et al. (1997). Using those parameters, the numerical simulations of a number of triaxial tests were conducted and the results compared with the experimental data in order to verify the performance of the model. After the verification stage, the formulation was incorporated in a commercial FE code (Abaqus/standard) using the UMAT interface and was then applied to a numerical analysis of a tunnel excavation within the anisotropic rock mass. The numerical results, including the distribution of the damage and vertical/horizontal displacements, have been compared for different orientations of the bedding planes. / Thesis / Master of Applied Science (MASc)

Page generated in 0.0332 seconds