• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Disposal of Toxic and Non-Toxic Waste through Lasers : Destruction of toxic solids, liquids and gases Models and Experimental Results

Islam, Ali January 2013 (has links)
The report discusses the destruction of toxic and non-toxic solids, liquids and gases through lasers. In order to completely understand the project first chapters describes the basics about laser and plasma separately, from definition to types, components and categories. Differences between laser and microwave system are covered in this chapter as well. Besides lasers there are different technologies that are currently being used to destroy toxic and non-toxic materials. These technologies were studied and comparison tables are made in order to discern between different destruction technologies. For the destruction of toxic and non-toxic materials through lasers two mathematical models have been developed, molecular dissociation model and plasma exploitation model, and later the experimental work was carried out on one of the toxic material. Mathematical modeling and experimental work is in accordance with each other as discussed in results and discussion. Mathematical model shows that all the materials discussed in the report can be destroyed by lasers but in order to carry further experiments on all other toxic and non-toxic materials, a proposal is made for the laser reactor using CAD model (Solid Edge) and drawing software (AutoCAD). Tables and mathematical calculations have been placed in appendix at the end of the report.

Page generated in 0.3245 seconds