Spelling suggestions: "subject:"trace metal"" "subject:"trace fetal""
1 |
Trace metal concentrations and isotopes as tracers of oceanic processesLunel, Tim January 1990 (has links)
No description available.
|
2 |
Determination of trace metals by ion-chromatography with chemiluminescence detectionWilliams, Timothy Paul January 1990 (has links)
No description available.
|
3 |
Rare earth elements and neodymium isotopes in the Indian OceanBertram, Caroline Jane January 1989 (has links)
No description available.
|
4 |
The recent sedimentary history and contemporary budgets of zinc, copper and lead in Lough Neagh, Northern IrelandFletcher, Catherine L. January 1990 (has links)
No description available.
|
5 |
The distribution and behaviour of some nutrient and trace metal species in three Welsh estuariesPattinson, C. January 1979 (has links)
No description available.
|
6 |
Development of HPLC techniques for the analysis of trace metal species in the primary coolant of a pressurised water reactorBarron, Keiron Robert Philip January 1988 (has links)
No description available.
|
7 |
The biogeochemistry of iron, zinc and cobalt in the Atlantic Ocean : the Atlantic Meridional Transect and UK GEOTRACES sectionsWyatt, Neil January 2014 (has links)
Between 40 % and 50 % of the Earth’s primary production occurs in marine environments, primarily by phytoplankton. The trace metal micronutrients iron, zinc and cobalt are known to exert a significant biological control on phytoplankton productivity by serving as essential active centres in enzymatic processes such as inorganic carbon, nitrogen and phosphorus acquisition. The distributions and biogeochemistries of iron, zinc and cobalt therefore, have the potential to impact upon the global carbon cycle and hence climate. This research involves investigations into the biogeochemical cycling of iron, zinc and cobalt in the Atlantic Ocean. Iron measurements were conducted during October and November 2009 to determine the distribution and biogeochemistry of iron in the upper water column of the Atlantic Ocean along an Atlantic Meridional Transect (AMT-19). In addition, deck board incubation experiments were performed to establish the role of iron in controlling rates of di-nitrogen (N2) fixation in the North Atlantic. The distribution patterns and biogeochemistries of iron, zinc and cobalt in the South Atlantic at 40° S were determined during the UK GEOTRACES Section GA10 cruises of October 2010 and December 2011 to January 2012. Iron distributions in North Atlantic surface waters were primarily controlled by the transport and deposition of atmospheric dust particles. In the North Atlantic, elevated surface dissolved iron concentrations (0.50 - 1.65 nM) were associated with wet and dry deposition of Saharan dust between 4 and 29° N. To the south of 4° N, surface dissolved iron concentrations were markedly reduced (0.14 nM) indicating that high precipitation rates in the Inter-Tropical Convergence Zone (4 - 10° N) formed a barrier to the large-scale transport of Saharan dust particles, thus iron, to the South Atlantic. Here, the low surface dissolved iron concentrations were balanced by a total dissolvable iron flux out of the surface mixed layer (3.2 µmol m-2 y-1) that was comparable to atmospheric input estimates. Nitrogen fixation rates in the North Atlantic were highest (0.3 – 1.1 nmol L-1 d-1) where surface dissolved iron concentrations were elevated (1.02 nM) and decreased with increasing latitude as iron decreased. Hence, iron variability in the North Atlantic was sufficient to influence nitrogen fixation over a large spatial scale. In the South Atlantic Ocean at 40° S, the vertical and horizontal distributions of dissolved zinc and cobalt showed distinct gradients associated with the water masses present. Zinc concentrations ranged from 15 pM in open ocean surface waters to 8 nM in Antarctic Bottom Waters, whilst cobalt ranged from 2 pM to 80 pM in intermediate waters and was scavenged in deeper waters. Growth limiting mixed layer zinc concentrations resulted from the lack of a direct return path for zinc to the South Atlantic pycnocline with Sub-Antarctic Mode Water. Low zinc in this return path was identified by a linear correlation between zinc and soluble reactive phosphorus that showed a kink at ~ 500 m, much deeper than that observed in other oceanographic regimes. A seasonal study in the Southeast Atlantic revealed that the depletion of zinc over spring-summer periods resulted in an increase in the nutritional importance of cobalt and a shift towards phytoplankton with a cellular preference for cobalt over zinc and/or the ability to co-substitute these two trace metals at the molecular level. These key findings demonstrate the physico-chemical and biological influences that interact to control the distributions and biogeochemistries of iron, zinc and cobalt across diverse oceanographic regimes of the Atlantic Ocean, provide the first examination of zinc and cobalt biogeochemistries along the productive 40° S parallel and highlight the need for additional research in this region.
|
8 |
Trace metal uptake and accumulation pathways in Kemp's ridley sea turtles (Lepidochelys kempii)Wang, Hui-Chen 29 August 2005 (has links)
Little is known of trace metal concentrations and their possible role in the
mortality of critically endangered Kemp??s ridley sea turtles (Lepidochelys kempii).
Research described herein characterized concentrations of seven trace metals ??
Ag, Cd, Cr, Cu, Hg, Pb and Zn ?? in the blood and carapace tissue of captive
Kemp??s ridleys for use in assessing levels of these metals in wild counterparts.
Concentrations of same trace metals were characterized in post-pelagic through
adult life stages of 127 wild Kemp??s ridleys captured from the Gulf of Mexico and
southeast Atlantic during 2000 to 2002. Blood, carapace, liver, kidney, and
muscle tissues from live and/or stranded Kemp??s ridleys were analyzed for the
aforementioned trace metals via graphite furnace atomic absorption
spectrophotometer and cold vapor atomic fluorescence techniques conducted
under class-100 clean laboratory conditions. Similar trace metal assessments
were conducted on blue crab (Callinectes sapidus) prey to determine the role of
food as a possible uptake pathway in Kemp??s ridleys.
Overall, trace metal levels in live, captive as well as wild ridleys were higher
in carapace tissue than in blood. Carapace concentrations of Ag, Cr and Hg in
Kemp??s ridleys across all post-pelagic life stages increased with increasing
straight carapace length (SCL). Carapace tissue of wild ridleys exhibited higher
Cr, Hg, and Pb levels than their blue crab prey, regardless of study area;
whereas, crabs yielded higher Ag and Cu concentrations. Dead stranded ridleys
yielded higher Ag, Cr, Hg, Pb, Zn levels in carapace tissue, whereas, their liver
exhibited higher Cd and Cu levels. This finding suggests carapace tissue could
serve as a suitable surrogate sample source for internal organs/tissues when
monitoring exposure of live Kemp??s ridleys to certain metals. The fact that larger,
stranded ridleys exhibited higher Ag, Cd, Hg, Pb and Zn levels than did their
smaller, live analogs from Texas and Louisiana implies that these older ridleys
had increased opportunities to accumulate higher metal concentrations in their
carapace tissue than did their younger conspecifics. This trend suggests that
carapace tissue has the potential to accumulate trace metals while blood-borne
concentrations reflect only recent exposure to trace metals.
|
9 |
Controls of Trace Metal Distributions in the Kaoping Coastal ZoneHo, Chuang-yi 24 July 2008 (has links)
This study investigates the distributions of trace metals and their controlling mechanisms in the Kaoping coastal zone. Concentrations of most dissolved metals were generally lower in the wet season than in the dry season in the Kaoping Estuary, showing clearly the effects of river discharge rate and water residence time on metal distributions. Dissolved trace metals (Fe, Mn, Zn, Cu, Cd and Pb) behaved non-conservatively with addition in the estuary. Nevertheless, dissolved Pb was apparently removed from the estuary in the wet season. Particulate Al and Fe were derived mainly from continental weathering and their transports through the estuary depend highly on the distribution of total suspended matter (TSM). During the dry season, the occurrence oxygen-deficit condition in the low salinity region and possible pollution from the San-Wei fishery harbor likely determined the distributions and solid-solution partitions of Mn, Zn, Cu, Cd and Pb in the estuary.
Distributions of dissolved trace metals in the Kaoping coastal zone were significantly influenced by terrestrial inputs from the Kaoping River. Seasonal variations were attributed largely from the mixing between river water and sea water in the mixing layer and sediment resuspension from canyon bed. The column integrated dissolved and particulate metals were generally higher in the summer season than in other seasons. The difference was especially pronounced in nearshore stations. Concentrations of dissolved Mn, Zn, Cu and Pb increased generally with depth, reflecting the effects of resuspension and lateral transport of bottom sediment. Dissolved Zn and Cu concentrations correlated well with dissolved Mn concentration, but particulate Zn and Cu correlated poorly with particulate Al, implying that distributions of Zn and Cu were controlled by terrestrial inputs and biogeochemical processes in the Kaoping Canyon. Positive and negative correlations are found between dissolved Cd and nutrients (N+N¡Aorthophosphate) and between dissolved Cd and dissolved organic carbon (DOC), respectively, indicating that Cd is a nutrient-type metal and controlled biogeochemically in the Kaoping Canyon.
Specific events such as typhoon and earthquake influenced significantly the distributions of trace metals in the Kaoping coastal zone. The integrated suspended-matter and suspended-metal concentrations showed an order magnitude higher during the typhoon season than in the normal summer season. Under the influence of earthquake, the TSM values of the bottom waters were much higher (2-7 folds) during the post- earthquake cruise (Jan/2007) than in the normal season (Jan/2006). Meanwhile, particulate Al, Fe, and Mn can increase up to 2- to 10-folds after earthquake in the bottom layer of canyon.
Metal enrichment factor (EF) is an indicator of metal pollution. The EFs show an order magnitude higher in the dry season than in the wet season both in the estuary and canyon. Such seasonal patterns clearly indicate the impacts of local and river inputs on metal distributions in the estuary and canyon.
|
10 |
The effects of copper on marine meiobenthic communities : field and laboratory studiesSaunders, Graham R. January 2000 (has links)
No description available.
|
Page generated in 0.0632 seconds