• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 72
  • 72
  • 72
  • 18
  • 12
  • 10
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Trace element geochemistry of marine biogenic particulate matter /

Collier, Robert William, January 1980 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Sciences, 1981. / Supervised by John M. Edmond. Vita. Includes bibliographical references (leaves 225-239).
22

Transport of trace metals in nearshore sediments /

Martin, William R. January 1900 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1985. / "April 1985." Bibliography: p. 292-301.
23

Trace metal ion activities from liquid-liquid partitioning measurements

Kennish, John Michael 01 January 1978 (has links)
Elucidation of the chemical speciation of trace metals in the natural aquatic environment will lead to a better understanding of their distribution and ecological effects. One approach which can provide useful information about the chemical reactivity of metal ions is the measurement of their activity. Phase equilibrium methods are required and liquid-liquid partition equilibria are applicable. This study utilized model systems to demonstrate this applicability. The partitioning of copper(II) ions as a chelate of acetylacetone was used to determine the trace activity coefficients of the copper(II) electrolyte in the CU(N03)2-HN03-KN03, Cu(N03)2-HCl04-NaCl04 and CuC12-HCl-KCl systems over a wide range of ionic strengths (u). By careful control of pH and acetylacetone concentration only 1-3% of the metal ion was extracted. Under these conditions the amount extracted is proportional to the activity. The concentration of the bis(Acetylacetonato) Copper(II) was determined in the organic phase by spectrophotometric and atomic absorption methods but any convenient concentration technique could be used to measure the amount extracted. A comparison of activity measurements by liquid-liquid partitioning was made with electrochemical measurements by utilizing a copper ion selective electrode. The significantly lower activity coefficient values obtained by the electrochemical method were explained in terms of the liquid junction potential and the necessity for extrathermodynamic approaches to single ion activities. Potential application of the liquid-liquid partitioning method to the determination of trace activity coefficients in natural aquatic systems was demonstrated by extension of the method to measurements in copper(II) amino acid solutions at u = 0.001 and u = 0.723. The ionic strength adjustments in this case were made with NaCl. A significant difference in the free copper (II) ion activity was observed between solutions of copper(II) glycinate and copper(II) alaninate under identical conditions of metal and ligand concentrations, pH and ionic strength. The copper(II) activity measurements made in the presence of the amino acids at u = 0.723 are not possible with copper ion selective electrodes due to chloride interference.
24

Geochemistry of alkaline-earth elements in the Amazon River

Hao, Weimin January 1979 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Science, 1979. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND LINDGREN. / Bibliography: leaves 47-52. / by Wei Min Hao. / M.S.
25

Bromide as an environmental tracer in ground water of the Tucson Basin, Arizona

Koglin, Eric Norman. January 1984 (has links) (PDF)
Thesis (M.S. - Hydrology)--University of Arizona, 1984. / Includes bibliographical references (leaves 68-72).
26

Trace organics pollution in the aquatic environment /

Wong, Wang-wah. January 1993 (has links)
Thesis (M. Sc.)--University of Hong Kong, 1993.
27

The application of differential pulse stripping voltammetry in the determination of trace metals in wet precipitation

Le Roux, Shirley Theodora Rose January 1999 (has links)
Thesis (MTech (Physical Sciences))--Peninsula Technikon, Cape Town, 1999. / Wet deposition of toxic trace metals is the dominant mode of deposition in terrestrial ecosystems and contributes very significantly to their pollution burden. Wet deposited metals are dissolved in rainwater. They reach the vegatation in a form most favourable for uptake. Reliable analysis of toxic trace metals in rainwater is important in order to determine the impact they make on the environment. In this study, trace metals in rainwater and in dry deposition (as a control measure), have been analysed over a period of a year. These metals include cadmium, copper, cobalt, lead, nickel and zinc. The rainwater was filtered, acidified to pH2 and irradiated with UV-light. Dry deposition samples, were digested by heating in nitric acid before analysis. Differential-pulse anodic stripping voltammetry was used to determine cadmium, lead and zinc. Copper was determined by adsorptive cathodic stripping at pH7 after complexation with catechol. Cobalt and nickel were measured at pH9 by adsorptive cathodic stripping after formation of their dimethylglyoximes. Sampling was done on a daily basis from April 1996 to March 1997, on the campus of the Peninsula Technikon. The samples were collected over a 24-hour period. The total average concentration for the metals was 16.11 flg/dm3 for rainwater and 427flg/dm3 for dry deposition. Meteorological factors such as wind speed, humidity and temperature affect the distribution of pollutants and thus the trace metal levels. The levels of the metallic pollutants were thus evaluated against meteorological data. Differential-pulse stripping voltammetry is shown to be applicable for heavy metal analysis of rainwater.
28

Adsorption of trace metals by hydrous ferric oxide in seawater.

Swallow, K. C. (Kathleen C.) January 1978 (has links)
Thesis. 1978. Ph.D. cn--Massachusetts Institute of Technology. Dept. of Chemistry. / Includes bibliographical references. / Ph.D.cn
29

Trace metal speciation in the Pieman River catchment, Western Tasmania.

Denney, Susan, susan.denney@deakin.edu.au January 2000 (has links)
The Pieman River catchment has seen continuous mining of economic deposits of gold, silver, lead, copper, zinc and tin since the 1870’s. Tributaries of this river which receive mining effluent, either directly or from acid mine drainage (AMID), have total metal concentrations considerably above background levels and are of regulatory concern. The lower Pieman River is however classified as a State Reserve in which recreational fishing and tourism are the major activities. It is therefore important that water entering the lower Pieman River from upstream hydroelectric impoundments is of high quality. Metals in natural waters exist in a variety of dissolved, colloidal and particulate forms. The bioavailability and hence toxicity of heavy metal pollutants is very dependant on their physico form. Knowledge of the speciation of a metal in natural aquatic environments is therefore necessary for understanding its geochemical behaviour and biological availability. Complexation of metal ions by natural ligands in aquatic systems is believed to play a significant role in controlling their chemical speciation. This study has investigated temporal and spatial variation in complexation of metal ions in the Pieman River. The influence of pH, temperature, organic matter, salinity, ionic strength and time has been investigated in a series of field studies and in laboratory-based experiments which simulated natural and anthropogenic disturbances. Labile metals were measured using two techniques in various freshwater and estuarine environments. Diffusive gradients in thin-films (DGT) allowed in situ measurement of solution speciation whilst differential pulse anodic stripping voltammetry (DPASV) was used to measure labile metal species in water samples collected from the catchment. Organic complexation was found to be a significant regulating mechanism for copper speciation and the copper-binding ligand concentration usually exceeded the total copper concentration in the river water. Complexation was highly dependent on pH and at the river-seawater interface was also regulated by salinity, probably as a result of competitive complexation by major ions in seawater (eg. Ca 2+ ions). Zinc complexation was also evident, however total zinc concentrations in the water column often far exceeded the potential binding capacity of available ligands. In addition to organic complexation, Zn speciation may also be associated with adsorption by flocculated or resuspended colloidal Mn and/or Fe oxyhydroxides. Metal ion complexation and hence speciation was found to be highly variable within the Pieman River catchment. This presents major difficulties for environmental managers, as it is therefore not possible to make catchment-wide assumptions about the bioavailability of these metals. These results emphasise the importance of site-specific sampling protocols and speciation testing, ideally incorporating continuous, in situ monitoring.
30

Studies of chemical speciation of trace metals in natural waters using an on-line electrochemical cell and ion exchange system

Sule, Pushkar Anant 22 April 1991 (has links)
Graduation date: 1991

Page generated in 0.1352 seconds