• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis for certain selected trace inorganic ions in York-Prairie Creek Pond

Mapetla, Shadrack K. January 1980 (has links)
As a result of rapid growth in technology, efforts to remove pollutants from the natural environment have not been able to keep pace with the increasing amount of waste materials and a growing population that further aggravates the situation. This has resulted in the transformation of lakes and ponds into pollution depots. A pilot study for monitoring certain selected trace elements entering and leaving YorkPrairie Creek Pond, situated inside the campus of Ball State University, was undertaken with the view to establishing whether or not this pond has been polluted, like many lakes and ponds, by metal corrosion, engine exhaust gases, and runoff from fertilizers and streets.This investigation involved sampling pond waters at two sites, viz., Influx surface and Effluent surface. Samples were collected once daily at the same time over a total time period of 23 days. Each sample was analyzed, in duplicate, for the heavy metal cations iron, lead, and cadmium, and for the inorganic anions nitrate, orthophosphate, and chloride. Metals were analyzed by atomic absorption spectrophotometry (A. A. S.), while titrimetric and cotorimetric procedures were utilized for the anion analyses.Results have indicated that iron and chloride are the most abundant of all analytes. Precipitation tends to Increase concentrations of analytes in general, possibly due to increased runoff and the lowering of the pH of these waters; leading to increased elemental release into solution. The relative responses of the analyzed ion levels in pond influx and effluent waters have been shown to be similar although their levels were significantly different.Analyte levels were found to be generally higher in effluent than in Influx waters; only chloride was found to depart from this general behavior. This finding led to the conclusion that the selected Ions, with the exception of chloride, tend not to accumulate in the waters of the pond but rather to escape with its effluent. This conclusion is subject to modification by future researchers, to whom the author has recommended a more expanded sampling program that would include the surface and sediment of the pond's interior since the nature of the results (especially for Pb and Cd) would seem to indicate not only that the pond does not exhibit thorough mixing of its constituents (homogeneity) but also the presence of an active remobilization process within its interior.
2

Internal Cycling in an Urban Drinking Water Reservoir

Raftis, Robyn R. 12 October 2007 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The focus of this study was to document phosphorus (P) and metal cycling in the Eagle Creek Reservoir (ECR), located in Indianapolis, central Indiana. Eagle Creek Reservoir serves the drinking water needs of over 80,000 residents. Within the last several years, algal blooms have created stress to the local treatment facility. The objective of this study was to examine how P cycling from oxygen deprived bottom sediments affects the algal bloom productivity. As such, cores were retrieved from different water depths (7 and 16 m) from portions of the reservoir where high surficial concentrations of organic matter and P were found to occur. The dried samples were analyzed for P, sulfur, iron, barium, cadmium, copper, lead, and zinc, using a strong acid digestion technique. The samples were also analyzed for iron-bound P (Fe-P), authigenic P (A-P), detrital P (D-P), organic P (O-P), reducible iron, and reducible manganese, using a sequential extraction technique. The results from the study showed moisture contents ranged from 16 to 76% and organic matter contents ranged from 2 to 12 wt%. The dry bulk densities were determined to be between 0.27 and 1.68 g cm3. The average percentages of P in ECS-1, as determined by the sequential extraction method, were as follows: Fe-P, 66.2%; A-P, 8.1%; D-P, 4.8%; and O-P, 20.9%. The average percentages of P in ECS-3, as determined by the sequential extraction method, were as follows: Fe-P, 77.0%; A-P, 6.5%; D-P, 2.8%; and O-P, 16.7%. To determine relationships between elements, correlations were calculated. When looking as the relationships between the P fractions and reducible Fe, differences were observed between the different water depths. There was less correlation between reducible Fe and Fe-P, and between O-P and Fe-P, in ECS-3, indicating that Fe-P is more efficiently dissolved and recycled in the deep portion of ECR. The study shows that the Fe-P flux, caused by the iron redox cycle, is persistent and will continue to influence algal bloom productivity in the deeper portions of ECR.

Page generated in 0.1658 seconds