• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Deep Learning approach to predict software bugs using micro patterns and software metrics

Brumfield, Marcus 07 August 2020 (has links)
Software bugs prediction is one of the most active research areas in the software engineering community. The process of testing and debugging code proves to be costly during the software development life cycle. Software metrics measure the quality of source code to identify software bugs and vulnerabilities. Traceable code patterns are able to de- scribe code at a finer granularity level to measure quality. Micro patterns will be used in this research to mechanically describe java code at the class level. Machine learning has also been introduced for bug prediction to localize source code for testing and debugging. Deep Learning is a branch of Machine Learning that is relatively new. This research looks to improve the prediction of software bugs by utilizing micro patterns with deep learning techniques. Software bug prediction at a finer granularity level will enable developers to localize code to test and debug during the development process.

Page generated in 0.0558 seconds