• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 141
  • 34
  • 25
  • 24
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 271
  • 64
  • 58
  • 40
  • 36
  • 34
  • 33
  • 32
  • 32
  • 23
  • 21
  • 18
  • 18
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Development and use of [18F]FDR as a new powerful radiolabelling agent for Positron Emission Tomography (PET) imaging of hypoxia

Musolino, Manuele January 2016 (has links)
In recent years tumour hypoxia has been extensively investigated, mainly because it is a source of resistance to the common radio and chemo therapies. In fact, the low levels and heterogeneous distribution of oxygen in hypoxic microenvironment render ionizing radiation ineffective in treating cell proliferation. Furthermore, a low oxygen concentration promotes the activation of HIF-1 transcription factor, which favours the development of a more malignant and resistant cancer cell phenotype often associated with poor prognosis. Positron Emission Tomography (PET) imaging is a valuable diagnostic tool for investigating hypoxia in vivo by means of radiotracers, which incorporates both a radioisotope and a hypoxia-sensitive function. The aim of this multidisciplinary project was to develop small libraries of radiolabelled compounds starting from the biological and chemical features of the two gold standard hypoxia PET tracers [18F]FMISO and [18F]FAZA as well as those of the promising new tracer [18F]HX4. These new radiocompounds display the following peculiar structural characteristics: a 2-nitroimidazole hypoxia-sensitive moiety, different spacers to modulate steric constraint, lipophilicity and metabolic stability and a fluorinated aldopentose sugar as prosthetic group (e.g. [18F]FDR). Two series of compounds were designed and developed based on the conjugation method used to introduce the prosthetic group, namely the oxime bond formation and the thiazolidine ring closure. Six radiotracers belonging to the oxime-derivatives series were tested in vitro on MCF7 breast cancer cell lines in hypoxic conditions and a lead radiocompound incorporating a cyclopropyl group was identified. This new hypoxia tracer showed a better kinetic profile than both [18F]FMISO and [18F]FAZA in MCF7 cancer cell lines and comparable uptake values on a panel of different cancer cell lines, up to 120 min post administration at 1% of O2. These promising results will pave the way for futures in vivo studies.
82

Development of novel lanthanide based particle tracers for rapid monitoring of soil erosion

Cruickshank, Laura January 2016 (has links)
Soil erosion is a global problem, affecting much of the world’s agricultural land. As the world’s population increases, the pressures placed upon the land resource to provide space for food production, leisure, housing and industrial facilities also increases. Thus it is vital that the land resource is as productive as possible. As soil erosion is the major cause of soil degradation globally, it is vital that methods for accurately monitoring the degree of erosion from a site, and the effectiveness of any remediation attempts are available. Reported here is the development of a novel soil erosion particle tracer, based upon a lanthanide chelate complex doped silica particle. The luminescent lanthanide chelate complexes were comprised of 2-thenoyltrifluoroacetone (TTA) and 2-pyridinol-1-oxide (2PO) coordinated with either trivalent europium or terbium ions. These complexes were then doped into silica sol-gel particles using a core shell technique. This method resulted in the synthesis of two luminescent soil tracers, targeted to two of the key eroded soil fractions; fine silt (63-250 μm) and clay (< 1.2 μm). The behaviour of the tracers was analysed within three different soils obtained from the Glensaugh research station. They retained their luminescence when mixed with soil, and could be detected at concentrations of 10 mg tracer / kg soil using a standard benchtop fluorescence spectrometer (Perkin Elmer LS55B). Scanning electron micrographs indicated that the tracer particles interacted with the soil particles, whilst soil sedimentation experiments demonstrated that the tracer particles had a similar sedimentation pattern to natural soil particles. Soil microbial respiration studies were performed for the tracers and showed that the tracers did not significantly impact the soil microbial population. Studies of the luminescence stability of the tracer in soil over time showed that the tracer could be detected in the soil for one season (approximately 3 months). A prototype rainfall simulator, designed to simulate the kinetic energy of raindrops on the surface of the soil, was developed, and used during a series of rainfall simulation experiments. These simulations were performed at two different rainfall intensities (30 and 90 mm.h-1) and both of these conditions resulted in movement of the tracer particles within the plot. This movement was both horizontal, in overland flow over the plot surface, and vertical, through the plot. The pattern of tracer movement reflected that of the soil mass moved, and as such indicated that the tracers exhibited similar transport behaviour during the erosion simulations performed. These initial simulations demonstrated that the tracers can be detected at low concentrations within the soil using standard laboratory equipment, and that they move with the eroded soil particles during simulated soil erosion experiments. As such, these tracers are excellent candidates for further study in larger scale erosion events.
83

Dispersal and Overwintering Behavior of Plum Curculio, Conotrachelus nenuphar (Herbst), (Coleoptera: Curculionidae) in Southern Quebec

Lafleur, Gérald 09 1900 (has links)
No description available.
84

Quantitative radiotracer imaging : the development of a clinically practical instrumenttation and analysis system /

Deutschman, Arnold Harry January 1975 (has links)
No description available.
85

Monitoring CO2 Plume Migration for a Carbon Storage-Enhanced Coalbed Methane Recovery Test in Central Appalachia

Louk, Andrew Kyle 04 February 2019 (has links)
During the past decade, carbon capture, utilization, and storage (CCUS) has gained considerable recognition as a viable option to mitigate carbon dioxide (CO2) emissions. This process involves capturing CO2 at emission sources such as power plants, refineries, and processing plants, and safely and permanently storing it in underground geologic formations. Many CO2 injection tests have been successfully conducted to assess the storage potential of CO2 in saline formations, oil and natural gas reservoirs, organic-rich shales, and unmineable coal reservoirs. Coal seams are an attractive reservoir for CO2 storage due to coal's large capacity to store gas within its microporous structure, as well as its ability to preferentially adsorb CO2 over naturally occurring methane resulting in enhanced coalbed methane (ECBM) recovery. A small-scale CO2 injection test was conducted in Southwest Virginia to assess the storage and ECBM recovery potential of CO2 in a coalbed methane reservoir. The goal of this test was to inject up to 20,000 tons of CO2 into a stacked coal reservoir of approximately 15-20 coal seams. Phase I of the injection test was conducted from July 2, 2015 to April 15, 2016 when a total of 10,601 tons of CO2 were injected. Phase II of the injection was conducted from December 14, 2016 to January 30, 2017 when an additional 2,662 tons of CO2 were injected, for a total of 13,263 total tons of CO2 injected. A customized monitoring, verification, and accounting (MVA) plan was created to monitor CO2 injection activities, including surface, near-surface, and subsurface technologies. As part of this MVA plan, chemical tracers were used as a tool to help track CO2 plume migration within the reservoir and determine interwell connectivity. The work presented in this dissertation will discuss the development and implementation of chemical tracers as a monitoring tool, detail wellbore-scale tests performed to characterize CO2 breakthrough and interwell connectivity, and present results from both phases of the CO2 injection test. / PHD / During the past decade, carbon capture, utilization, and storage (CCUS) has gained considerable recognition as a viable option to mitigate carbon dioxide (CO2) emissions. This process involves capturing CO2 at emission sources such as power plants, refineries, and processing plants, and safely and permanently storing it in underground geologic formations. Many CO2 injection tests have been successfully conducted to assess the storage potential of CO2 in saline formations, oil and natural gas reservoirs, organic-rich shales, and unmineable coal reservoirs. Coal seams are an attractive reservoir for CO2 storage due to coal’s large capacity to store gas within its microporous structure, as well as its ability to preferentially adsorb CO2 over naturally occurring methane resulting in enhanced coalbed methane (ECBM) recovery. A small-scale CO2 injection test was conducted in Southwest Virginia to assess the storage and ECBM recovery potential of CO2 in a coalbed methane reservoir. The goal of this test was to inject up to 20,000 tons of CO2 into a stacked coal reservoir of approximately 15-20 coal seams. Phase I of the injection test was conducted from July 2, 2015 to April 15, 2016 when a total of 10,601 tons of CO2 were injected. Phase II of the injection was conducted from December 14, 2016 to January 30, 2017 when an additional 2,662 tons of CO2 were injected, for a total of 13,263 total tons of CO2 injected. A customized monitoring, verification, and accounting (MVA) plan was created to monitor CO2 injection activities, including surface, near-surface, and subsurface technologies. As part of this MVA plan, chemical tracers were used as a tool to help track CO2 plume migration within the reservoir and determine interwell connectivity. The work presented in this dissertation will discuss the development and implementation of chemical tracers as a monitoring tool, detail wellbore-scale tests performed to characterize CO2 breakthrough and interwell connectivity, and present results from both phases of the CO2 injection test.
86

Biological and Chemical Renovation of Wastewater with a Soil Infiltrator Low-Pressure Distribution System

DiPaola, Tracey Stickley 08 July 1998 (has links)
An alternative on-site wastewater treatment and disposal system (OSWTDS) consisting of a soil infiltrator with low pressure distribution was evaluated in a soil that was unsuitable for a conventional OSWTDS under current Commonwealth of Virginia Sewage Handling and Disposal Regulations, due to a shallow seasonally perched water table and low hydraulic conductivity. The absorption field consisted of two subsystems numbered as 1 and 2 with effluent design loading rates of 5.1 and 10.2 Lpd/m2, respectively (actual loading rates of 2.4 and 4.9 Lpd/m2, respectively). Soil matric potentials compared seasonally for each subsystem and indicated that both provided similar hydraulic performance. Background water quality was generally improved by subsurface movement through the absorption fields. A bacterial tracer was found in shallow (45.7 cm) and deep (213.4 cm) sampling wells within 24 h in the two subsystems (but in low numbers) over both summer and winter sampling periods. A viral tracer was detected within 48 h in both shallow and deep wells, but only in subsystem 2 in the winter. In evaluating denitrification potential, the addition of glucose to soil core samples did increase quantitatively, although not significantly, nitrous oxide production in each subsystem, at each depth, during each season. Overall, the performance of both subsystems was very similar. The soil infiltrator functioned very well, as designed for the site and soil limitations. It appears to be a potential alternative OSWTDS for use in problem soils. / Master of Science
87

Carbon-14 measurements and characterization of dissolved organic carbon in ground water

Murphy, Ellyn Margaret. January 1987 (has links)
Carbon-14 was measured in the dissolved organic carbon (DOC) in ground water and compared with ¹⁴C analyses of dissolved inorganic carbon (DIC). Two field sites were used for this study; the Stripa mine in central Sweden, and the Milk River Aquifer in southern Alberta, Canada. The Stripa mine consists of a Precambrian granite dominated by fracture flow, while the Milk River Aquifer is a Cretaceous sandstone aquifer characterized by porous flow. At both field sites, ¹⁴C analyses of the DOC provide additional information on the ground-water age. At the Stripa site the DIC from the recharge area probably precipitates at around the 300 m level of the mine, never reaching the deeper ground waters. In this case, ¹⁴C analyses of the DOC provides a better estimate of the ground-water age. The dilution of the DIC by carbonates and microbial processes in the Milk River Aquifer is so great that geochemical corrections of ¹⁴C data are difficult. This is another example where ¹⁴C analyses of the DOC provide more information on ground-water age. Carbon-14 was measured on both the hydrophobic and hydrophilic organic fractions of the DOC. At the Stripa site, the hydrophobic organic compounds in the V2 borehole ranged from 7,500 to 15,500 years before present, suggesting a young component of ground water. Other hydraulic and isotopic evidence supports relatively recent ground water mixing with older brines in this borehole. The δ¹³C values of the DIC in the V2 borehole are light and similar to the stable carbon isotope values for the DOC, supporting a biogenic origin of the DIC. The organic compounds in the hydrophobic and hydrophilic fractions were also characterized. The DOC may originate from kerogen in the aquifer matrix, from soil organic matter in the recharge zone, or from a combination of these two sources. Carbon-14 analyses, along with characterization of the organics, were used to determine this origin. Carbon-14 analyses of the hydrophobic fraction in the Milk River Aquifer suggest a soil origin, while ¹⁴C analyses of the hydrophilic fraction suggest an origin within the Cretaceous sediments (kerogen) or from the shale in contact with the aquifer.
88

Experimental analysis and modeling of perfluorocarbon transport in the vadose zone : implications for monitoring CO₂ leakage at CCS sites

Gawey, Marlo Rose 01 November 2013 (has links)
Perfluorocarbon tracers (PFTs) are commonly proposed tracers for use in carbon capture and sequestration (CCS) leak detection and vadose zone monitoring programs. Tracers are co-injected with supercritical CO₂ and monitored in the vadose zone to identify leakage and calculate leakage rates. These calculations assume PFTs exhibit “ideal” tracer behavior (i.e. do not sorb onto or react with porous media, partition into liquid phases or undergo decay). This assumption has been brought into question by lab and field evaluations showing PFT partitioning into soil contaminants and sorbing onto clay. The objective of this study is to identify substrates in which PFTs behave conservatively and quantify non-conservative behavior. PFT breakthrough curves are compared to those of a second, conservative tracer, sulfur hexafluoride (SF₆). Breakthrough curves are generated in 1D flow-through columns packed with 5 different substrates: silica beads, quartz sand, illite, organic-rich soil, and organic-poor soil. Constant flow rate of carrier gas, N₂, is maintained. A known mass of tracer is injected at the head of the columns and the effluent analyzed at regular intervals for tracers at picogram levels by gas chromatography. PFT is expected to behave conservatively with respect to SF₆ in silica beads or quartz sand and non-conservatively in columns with clay or organics. However, results demonstrate PFT retardation with respect to SF₆ in all media (retardation factor is 1.1 in silica beads and quartz sand, 2.5 in organic-rich soil, >20 in organic-poor soil, and >100 in illite). Retardation is most likely due to sorption onto clays and soil organic matter or condensation to the liquid phase. Sorption onto clays appears to be the most significant factor. Experimental data are consistent with an analytical advection/diffusion model. These results show that PFT retardation in the vadose zone has not been adequately considered for interpretation of PFT data for CCS monitoring. These results are preliminary and do not take into account more realistic vadose zone conditions such as the presence of water, in which PFTs are insoluble. Increased moisture content will likely decrease sorption onto porous media and retardation in the vadose zone may be less than determined in these experiments. / text
89

Dynamics of stream and groundwater exchange using environmental tracers

Pritchard, Jodie Lee, January 2005 (has links)
Thesis (Ph.D.) -- Flinders University, School of Chemistry, Physics and Earth Sciences. / Typescript (bound). Includes bibliographical references (leaves 265-281). Also available online.
90

On-site system effluent source tracking using geochemical and microbial tracers in a coastal catchment

Geary, Phillip M. January 2004 (has links)
Thesis (Ph.D.) -- University of Western Sydney, 2004. / Includes bibliography.

Page generated in 0.0574 seconds