Spelling suggestions: "subject:"tradució automàtica"" "subject:"tradució automàtic""
1 |
Transformer Models for Machine Translation and Streaming Automatic Speech RecognitionBaquero Arnal, Pau 29 May 2023 (has links)
[ES] El procesamiento del lenguaje natural (NLP) es un conjunto de problemas
computacionales con aplicaciones de máxima relevancia, que junto con otras
tecnologías informáticas se ha beneficiado de la revolución que ha significado
el aprendizaje profundo. Esta tesis se centra en dos problemas fundamentales
para el NLP: la traducción automática (MT) y el reconocimiento automático
del habla o transcripción automática (ASR); así como en una arquitectura
neuronal profunda, el Transformer, que pondremos en práctica para mejorar
las soluciones de MT y ASR en algunas de sus aplicaciones.
El ASR y MT pueden servir para obtener textos multilingües de alta calidad a
un coste razonable para una diversidad de contenidos audiovisuales. Concre-
tamente, esta tesis aborda problemas como el de traducción de noticias o el de
subtitulación automática de televisión. El ASR y MT también se pueden com-
binar entre sí, generando automáticamente subtítulos traducidos, o con otras
soluciones de NLP: resumen de textos para producir resúmenes de discursos, o
síntesis del habla para crear doblajes automáticos. Estas aplicaciones quedan
fuera del alcance de esta tesis pero pueden aprovechar las contribuciones que
contiene, en la meduda que ayudan a mejorar el rendimiento de los sistemas
automáticos de los que dependen.
Esta tesis contiene una aplicación de la arquitectura Transformer al MT tal y
como fue concebida, mediante la que obtenemos resultados de primer nivel en
traducción de lenguas semejantes. En capítulos subsecuentes, esta tesis aborda
la adaptación del Transformer como modelo de lenguaje para sistemas híbri-
dos de ASR en vivo. Posteriormente, describe la aplicación de este tipus de
sistemas al caso de uso de subtitulación de televisión, participando en una com-
petición pública de RTVE donde obtenemos la primera posición con un marge
importante. También demostramos que la mejora se debe principalmenta a la
tecnología desarrollada y no tanto a la parte de los datos. / [CA] El processament del llenguage natural (NLP) és un conjunt de problemes com-
putacionals amb aplicacions de màxima rellevància, que juntament amb al-
tres tecnologies informàtiques s'ha beneficiat de la revolució que ha significat
l'impacte de l'aprenentatge profund. Aquesta tesi se centra en dos problemes
fonamentals per al NLP: la traducció automàtica (MT) i el reconeixement
automàtic de la parla o transcripció automàtica (ASR); així com en una ar-
quitectura neuronal profunda, el Transformer, que posarem en pràctica per a
millorar les solucions de MT i ASR en algunes de les seues aplicacions.
l'ASR i MT poden servir per obtindre textos multilingües d'alta qualitat a un
cost raonable per a un gran ventall de continguts audiovisuals. Concretament,
aquesta tesi aborda problemes com el de traducció de notícies o el de subtitu-
lació automàtica de televisió. l'ASR i MT també es poden combinar entre ells,
generant automàticament subtítols traduïts, o amb altres solucions de NLP:
amb resum de textos per produir resums de discursos, o amb síntesi de la parla
per crear doblatges automàtics. Aquestes altres aplicacions es troben fora de
l'abast d'aquesta tesi però poden aprofitar les contribucions que conté, en la
mesura que ajuden a millorar els resultats dels sistemes automàtics dels quals
depenen.
Aquesta tesi conté una aplicació de l'arquitectura Transformer al MT tal com
va ser concebuda, mitjançant la qual obtenim resultats de primer nivell en
traducció de llengües semblants. En capítols subseqüents, aquesta tesi aborda
l'adaptació del Transformer com a model de llenguatge per a sistemes híbrids
d'ASR en viu. Posteriorment, descriu l'aplicació d'aquest tipus de sistemes al
cas d'ús de subtitulació de continguts televisius, participant en una competició
pública de RTVE on obtenim la primera posició amb un marge significant.
També demostrem que la millora es deu principalment a la tecnologia desen-
volupada i no tant a la part de les dades / [EN] Natural language processing (NLP) is a set of fundamental computing prob-
lems with immense applicability, as language is the natural communication
vehicle for people. NLP, along with many other computer technologies, has
been revolutionized in recent years by the impact of deep learning. This thesis
is centered around two keystone problems for NLP: machine translation (MT)
and automatic speech recognition (ASR); and a common deep neural architec-
ture, the Transformer, that is leveraged to improve the technical solutions for
some MT and ASR applications.
ASR and MT can be utilized to produce cost-effective, high-quality multilin-
gual texts for a wide array of media. Particular applications pursued in this
thesis are that of news translation or that of automatic live captioning of tele-
vision broadcasts. ASR and MT can also be combined with each other, for
instance generating automatic translated subtitles from audio, or augmented
with other NLP solutions: text summarization to produce a summary of a
speech, or speech synthesis to create an automatic translated dubbing, for in-
stance. These other applications fall out of the scope of this thesis, but can
profit from the contributions that it contains, as they help to improve the
performance of the automatic systems on which they depend.
This thesis contains an application of the Transformer architecture to MT as it
was originally conceived, achieving state-of-the-art results in similar language
translation. In successive chapters, this thesis covers the adaptation of the
Transformer as a language model for streaming hybrid ASR systems. After-
wards, it describes how we applied the developed technology for a specific use
case in television captioning by participating in a competitive challenge and
achieving the first position by a large margin. We also show that the gains
came mostly from the improvement in technology capabilities over two years
including that of the Transformer language model adapted for streaming, and
the data component was minor. / Baquero Arnal, P. (2023). Transformer Models for Machine Translation and Streaming Automatic Speech Recognition [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/193680
|
Page generated in 0.0591 seconds