• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 2
  • 1
  • Tagged with
  • 73
  • 73
  • 24
  • 21
  • 19
  • 15
  • 14
  • 12
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Risk Mitigation and Management Strategies for Routing Hazardous Materials over Railroad Network in Canada

Vaezi, Ali January 2018 (has links)
Railroad transportation of hazardous materials (hazmat) has grown significantly in recent years in Canada. Although rail is one of the safest modes for hazmat transport, the risk of catastrophic events such as the Lac Mégantic train disaster, does exist. In this thesis, we study a number of measures to manage and mitigate the risk associated with rail hazmat shipments. First, we propose a methodology that makes use of analytics to dis-aggregate national freight data to estimate hazmat traffic on rail-links and at rail-yards in Canada. Further, a focused analysis is conducted on crude oil rail shipments to develop long-term forecasts and evaluate the impact of proposed pipeline projects. Second, we present an emergency response planning problem, aimed at the effective and efficient response to rail hazmat incidents. A two-stage stochastic programming problem is solved over part of the Canadian railroad network, which provides recommendations on where to locate response facilities, and which equipment packages to stockpile at each facility. Finally, we study infrastructure investment as a strategy to mitigate the risk associated with rail hazmat shipments. This strategy is based on building new railway tracks to provide alternative routes to the riskiest parts of the network. Given the hierarchical relationship between the decisions made by regulatory agencies and railroad companies, a bilevel programming approach is used to identify the optimal set of infrastructure investment options given an allocated budget. Our computational experiments show that significant network-wide risk reduction is possible if hazardous shipments are routed using some of the proposed alternative rail tracks. / Thesis / Doctor of Philosophy (PhD)
62

Development and evaluation of traffic prediction systems

Kim, Changkyun 06 June 2008 (has links)
Developing real-time traffic diversion strategies is a major issue of Advanced Traffic Management Systems (ATMS), a component of Intelligent Vehicle Highway Systems (IVHS). Traffic diversion utilizes available capacity in the urban network during a congestion-causing event. If an alternative route selected for diversion is not congested at the current time, a certain part of the route may become congested by the time the diverted drivers reach that part of the network. Thus the ability to forecast future traffic variables on each link along various routes in a prompt and accurate fashion may be necessary to ensure the success of a diversion strategy. Forecasting future traffic variables would also be helpful for urban traffic control. In addition, the forecasting model may help assign the vehicles onto the alternate roads, if the information on driver destinations and the routes between a diversion point and the destinations are available. This dissertation is aimed at developing and evaluating two prediction models: link-based model and network-based model. The link-based prediction model has two components. One component is an Auto Regressive Integrated Moving Average (ARIMA) time series model based on the latest (current) traffic data. The other component is the smoothed historical traffic volume (historical average) for that period as obtained from previous days. These two components are combined to represent the dynamic fluctuations in the traffic flow behavior. The combined model is designed to produce the predicted traffic volumes for a look-ahead period of 30 minutes, divided into 6-minute time intervals. The results show that the combined model is promising for light to medium congested traffic conditions. The network-based prediction model combines current traffic, historical average, and upstream traffic. It is presumed that traffic volume on the upstream can be used to predict the downstream traffic in a specific time period. Three prediction models are developed for traffic prediction: a combination of historical average and upstream traffic, a combination of current traffic and upstream traffic, and a combination of all three variables. The three models are evaluated through regression analysis. The third model is found to be the most applicable while the first model was the least. In order to consider current traffic conditions, a heuristic adaptive weighting system is devised based on the relationships between the origin of prediction and the previous periods. The developed models are applied to real freeway data in 15-minute time interval measured by regular induction loop detectors. The prediction models are shown to be capable of producing reliable and accurate forecasts under congested traffic condition. The prediction systems perform better in the 15-minute range than in the ranges of 30-minute or 45-minute. It is noted that the combined models usually produce more consistent forecasts than the historical average. / Ph. D.
63

Investigating the impact of recurrent and non-recurrent congestion on highway operations

Unknown Date (has links)
Traffic congestion is one of the most concerning issues in the transportation system. Recurrent congestion and non-recurrent congestion are explored in this research. This research will investigate one of the most concerning issues with the transportation system, congestion, using an overall delay analysis study. A developed fused database program was used to access and analyze the complete database data. Two online databases were used for obtaining traffic, incident and weather data. Eleven different scenarios such as peak-hours, rain scenario, incidents scenario, and work zone scenario were developed for the analysis. An overall delay study was performed on all scenarios to find the impact recurring and non-recurring congestion on the highway. The results of this research were interesting for future adjustment and improvements on the two segments of highways selected. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
64

Innovative web applications for analyzing traffic operations

Unknown Date (has links)
The road traffic along with other key infrastructure sectors such as telecommunication, power, etc. has an important role in economic and technological growth of one country. Traffic engineers and analysts are responsible for solving a diversity of traffic problems, such as traffic data acquisition and evaluation. In response to the need to improve traffic operation, researchers implement advanced technologies and integration of systems and data, and develop state-of-the-art applications. This thesis introduces three novel web applications with an aim to offer traffic operators, managers, and analysts’ possibility to monitor the congestion, and analyze incidents and signal performance measures. They offer more detailed analysis providing users with insights from different levels and perspectives. The benefit of providing these visualization tools is more efficient estimation of the performance of local networks, thus facilitating the decision making process in case of emergency events. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2015 / FAU Electronic Theses and Dissertations Collection
65

Trial application of a computer based transportation planning network : Muncie, Indiana

Guisse, Amadou Wane January 1989 (has links)
The purpose of this project was to apply the Quick Response System II (QRS II), developed by Alan J. Horowitz, Center for Urban Transportation Studies, University of Milwaukee-Wisconsin, to the city of Muncie, Indiana.The QRS II model is one example of recent computer models intended for micro-computers, which may be useful for smaller cities with limited planning staff or computer capabilities. The main point is to be able to forecast the impacts of urban developments on highway traffic and the impacts of highway projects on travel pattern.QRS II determines the total number of person-trips generated by each zone of the study area. It accomplishes this step for three trip purposes: home-based work, home-based nonwork, nonhome-based trips. It then distributes these trips from any given origin zone to any given destination, converts highway person-trips to vehicle-trips and assigns them to the links in the highway network based on travel time, and finally split the number of person-trips between transit and automobiles. QRS II also was used to determine the impact of new construction on the surrounding street system.The purpose of the pro t was not to do a complete transportation study. It was rather a test application of QRS II using the 1980 census data of the city of Muncie. We simply tried to get QRS II set up, running, and calibrated according to the findings of the model. The following chapters show the theory behind it, the different outputs, the advantages and limitations. / Department of Urban Planning
66

Bus real-time arrival prediction using statistical pattern recognition technique /

Vu, Nam Hoai, January 1900 (has links)
Thesis (Ph.D.) - Carleton University, 2007. / Includes bibliographical references (p. 219-233). Also available in electronic format on the Internet.
67

Geostatistical Interpolation and Analyses of Washington State AADT Data from 2009 – 2016

Owaniyi, Kunle Meshach January 2019 (has links)
Annual Average Daily Traffic (AADT) data in the transportation industry today is an important tool used in various fields such as highway planning, pavement design, traffic safety, transport operations, and policy-making/analyses. Systematic literature review was used to identify the current methods of estimating AADT and ranked. Ordinary linear kriging occurred most. Also, factors that influence the accuracy of AADT estimation methods as identified include geographical location and road type amongst others. In addition, further analysis was carried out to determine the most apposite kriging algorithm for AADT data. Three linear (universal, ordinary, and simple), three nonlinear (disjunctive, probability, and indicator) and bayesian (empirical bayesian) kriging methods were compared. Spherical and exponential models were employed as the experimental variograms to aid the spatial interpolation and cross-validation. Statistical measures of correctness (mean prediction and root-mean-square errors) were used to compare the kriging algorithms. Empirical bayesian with exponential model yielded the best result.
68

On the Estimation of Volumes of Roadways: An Investigation of Stop-Controlled Minor Legs

Barnett, Joel Stephen 19 February 2015 (has links)
This effort seeks to answer the question; can a transferable model be developed from easily obtainable, publicly available land-use, census, roadway, and network data for the use in safety performance functions? 474 stop-controlled minor legs were used as the training data set using ordinary least squares regression. A best-fit model of maximum independent variables, n=12 was chosen using an exhaustive approach using Mallow's Cp to select the model with least bias in the predictors. The results of the analysis revealed that the combination of variables from Washington, Ohio, and North Carolina did not have a strong relationship. The best-fit model incorporated functional class information of the major-leg, minor leg functional class information, longitudinal markings, access to a parking lot, and population density of census tract. Validation of the model demonstrated an average 59 percent error between the model estimated and actual AADT values for validation data set (n=54). Furthermore, separate models for each state revealed a lack of uniformity in the dependent variables, and more variance description of the state specific AADT.
69

Building a Multivariable Linear Regression Model of On-road Traffic for Creation of High Resolution Emission Inventories

Powell, James Eckhardt 27 January 2017 (has links)
Emissions inventories are an important tool, often built by governments, and used to manage emissions. To build an inventory of urban CO2 emissions and other fossil fuel combustion products in the urban atmosphere, an inventory of on-road traffic is required. In particular, a high resolution inventory is necessary to capture the local characteristics of transport emissions. These emissions vary widely due to the local nature of the fleet, fuel, and roads. Here we show a new model of ADT for the Portland, OR metropolitan region. The backbone is traffic counter recordings made by the Portland Bureau of Transportation at 7,767 sites over 21 years (1986-2006), augmented with PORTAL (The Portland Regional Transportation Archive Listing) freeway traffic count data. We constructed a regression model to fill in traffic network gaps using GIS data such as road class and population density. An EPA-supplied emissions factor was used to estimate transportation CO2 emissions, which is compared to several other estimates for the city's CO2 footprint.
70

Acurácia de previsões para vazão em redes: um comparativo entre ARIMA, GARCH e RNA

Duarte, Felipe Machado 29 August 2014 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-03-31T15:28:38Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Felipe Machado Duarte.pdf: 1439236 bytes, checksum: 970d1a4b49da9d4541eb167aa39a82fa (MD5) / Made available in DSpace on 2016-03-31T15:28:39Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Felipe Machado Duarte.pdf: 1439236 bytes, checksum: 970d1a4b49da9d4541eb167aa39a82fa (MD5) Previous issue date: 2014-08-29 / Em consequência da evolução da internet, causada por mudanças de paradigma como a Internet das coisas, por exemplo, surgem novas demandas tecnológicas por conta do crescimento do número de dispositivos conectados. Um dos novos desafios que vieram junto a esta demanda é gerenciar esta rede em expansão, de maneira a garantir conectividade aos dispositivos que a integram. Um dos aspectos que merecem atenção no gerenciamento da rede é o provisionamento da largura de banda, que deve ser realizado de maneira a evitar o desperdício de banda, sem por outro lado comprometer a conectividade ao restringi-la demais. No entanto, balancear esta equação não é uma tarefa simples, pois o tráfego de dados na rede é bastante complexo e exibe componentes, como a volatilidade, que tornam difícil a sua modelagem. Já há algum tempo, estudos são publicados apresentando a utilização de ferramentas de análise de séries temporais para prever a vazão de dados em redes de computadores, e entre as técnicas aplicadas com mais sucesso estão os modelos ARMA, GARCH e RNA. Embora estas técnicas tenham sido discutidas como alternativa para modelar dados de tráfego de redes, pouco material está disponível sobre a comparação de suas acurácias, de maneira que neste estudo foi proposta uma avaliação das acurácias dos modelos ARIMA, GARCH e RNA. Esta avaliação foi realizada em cenários configurados em diferentes granularidades de tempo e para múltiplos horizontes de previsão. Para cada um destes cenários foram ajustados modelos ARIMA, GARCH e RNA, e a validação das métricas de acurácia das previsões obtidas se deu através do Rolling Forecast Horizon. Os resultados obtidos mostraram que a RNA exibiu melhor acurácia em grande parte dos cenários propostos, chegando a exibir RMSE até 32% menor que as previsões geradas pelos modelos ARIMA e GARCH. No entanto, na presença de alta volatilidade, o GARCH conseguiu apresentar as previsões com melhor desempenho, exibindo RMSE até 29% menores que os outros modelos estudados. Os resultados deste trabalho servem de auxílio para a área de gerenciamento de redes, em especial a tarefa de provisionamento de largura de banda de tráfego, pois trazem mais informações sobre os desempenhos dos modelos ARIMA, GARCH e RNA ao gerar previsões para este tipo de tráfego. / The Internet evolution, caused by paradigm changes as the Internet of Things, fosters technological advances to cope with the rising number of connected devices. One of the new challenges that appeared with this new reality is the management of such expanding networks, assuring connectivity to every device within them. One of the major aspects of network management is bandwidth provisioning, which must be performed in a way to avoid bandwidth wasting, but without compromising connectivity by restricting it too much. Balancing such an equation is not a simple task, as network data traffic is very complex and presents property features, such as volatility, that turns its modeling rather difficult. It has been some time since research is published with the use of temporal analysis tools to predict data throughput in computer networks, among them, the most successful techniques employ the ARMA, GARCH and ANN models. Although these approaches have been discussed as alternatives do network data traffic modeling, there is little literature available concerning their accuracy, which motivated this work to perform an accuracy evaluation of the ARIMA, GARCH and ANN models. This evaluation was conducted in scenarios configured with different time granularities and for multiple forecast horizons. For each scenario, ARIMA, GARCH and ANN models were set, and the accuracy metrics evaluation was performed with a Rolling Forecast Horizon. Results show that ANN yielded better accuracy in most proposed scenarios, having a RMSE up to 32% lower than the forecasts generated by the ARIMA and GARCH models. However, when there is a high volatility, GARCH provided better forecasts, with a RMSE up to 29% lower than its counterparts. The results from this work provide a useful assistance to network management, especially to bandwidth provisioning, by shedding light on the accuracy presented by the ARIMA, GARCH and ANN models when generating forecasts for this type of traffic.

Page generated in 0.1383 seconds