• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Traffic light detection and V2I communications of an autonomous vehicle with the traffic light for an effective intersection navigation using MAVS simulation

Rahman, Mahfuzur 08 December 2023 (has links) (PDF)
Intersection Navigation plays a significant role in autonomous vehicle operation. This paper focuses on enhancing autonomous vehicle intersection navigation through advanced computer vision and Vehicle-to-Infrastructure (V2I) communication systems. The research unfolds in two phases. In the first phase, an approach utilizing YOLOv8s is proposed for precise traffic light detection and recognition, trained on the Small-Scale Traffic Light Dataset (S2TLD). The second phase establishes seamless connectivity between autonomous vehicles and traffic lights in a simulated Mississippi State University Autonomous Vehicle Simulation (MAVS) environment resembling a small city with multiple intersections. This V2I system enables the transmission of Signal Phase and Timing (SPaT) messages to vehicles, providing information on current traffic light phases and time until the next phase change which enables the vehicles to adjust their speed and behavior in real-time. The simulation demonstrates accurate traffic light detection, with vehicles receiving SPaT messages, showcasing the system’s effectiveness in a multi-intersection scenario.
2

METODOLOGIA DE DETECÇÃO E RECONHECIMENTO DE SEMÁFOROS UTILIZANDO REDES NEURAIS ARTIFICIAIS / METHODOLOGY OF DETECTION AND RECOGNITION OF SEMAPHORES USING ARTIFICIAL NEURAL NETWORKS

SOARES, Julio Cesar da Silva 22 March 2016 (has links)
Submitted by Maria Aparecida (cidazen@gmail.com) on 2017-04-24T13:52:10Z No. of bitstreams: 1 Julio Cesar da Silva Soares.pdf: 1645821 bytes, checksum: e32d7384c0a6f1999bc7eb190dcd7a05 (MD5) / Made available in DSpace on 2017-04-24T13:52:10Z (GMT). No. of bitstreams: 1 Julio Cesar da Silva Soares.pdf: 1645821 bytes, checksum: e32d7384c0a6f1999bc7eb190dcd7a05 (MD5) Previous issue date: 2017-03-22 / FAPEMA / Urban roads are very complex. The increase in the flow of vehicles in the cities has contributed to traffic accidents. Researches for accident reduction show that the traffic lights are effective in reducing accidents. Traffic lights can minimize the occurrence of accidents at intersections and crosswalks. The implementation of traffic light signals shows significant advantages, otherwise reveals some problems such as the failure to detect road signs by drivers on urban roads. This fact is related to excessive visual information, the stress of the drivers and/or eyestrain makes the drivers lose their attention. These reasons motivated researches about intelligent vehicles. This work aims to develop a methodology to detect and recognize traffic lights, to be applied in smart vehicles. This methodology can contribute to the Advanced Driver Support Systems (ADAS), which assists drivers, especially those with partial vision impairment. Image processing techniques are used to develop the detection methodology. Back project and global thresholding are combined to find light points. Local thresholding techniques are applied to calculate the symmetry between the radius and the center of the light points to segment the traffic light body. The first step got an average rate of 99% of detection. The features of the traffic lights are extracted using Haralick texture measures, with the inclusion of color and shape information. The data generated by the feature extraction step were preprocessed using the SMOTE technique to balance the database. The recognition and identification of the traffic lights state are made by an artificial neural network using Multilayer-Perceptron (MLP). The backpropagation learning algorithm are used in the network training. The validation results show an average recognition rate of 98%. / As vias urbanas estão cada vez mais complexas e o acréscimo no fluxo de veículos nas cidades de médio e grande porte vem contribuindo para a elevação do número de acidentes. Pesquisas apontam que os sinais de trânsito são eficientes na redução do número de acidentes. A implantação de sinais de trânsito apresentam vantagens relevantes, mas por outro lado revelam alguns problemas, como a dificuldade na detecção de sinais de trânsito pelos condutores em vias urbanas. Este fato está relacionado à quantidade de informações visuais nas vias, ao estresse dos motoristas e/ou à fadiga visual destes, que fazem os motoristas desviarem sua atenção da sinalização. Estas razões motivaram muitas pesquisas nos últimos anos, sobre o tema veículos inteligentes. Assim, o presente trabalho propõe uma metodologia para detectar e reconhecer semáforos de trânsito para ser aplicada em veículos inteligentes, podendo contribuir para os Advanced Driver Support Systems - ADAS (Sistema Avançado de Auxílio ao Motorista), e que auxilie os motoristas, em especial aqueles com deficiência parcial da visão. Além disso, o sistema desenvolvido é capaz de identificar o estado do semáforo e indicar ao condutor se ele deve parar ou prosseguir, contribuindo assim para a redução de acidentes de transito. Para o desenvolvimento do algoritmo de detecção, utilizaram-se técnicas de processamento de imagens, através de histograma retroprojetado e limiarização global para detectar pontos de luzes. A limiarização local é aplicada para o cálculo de simetria entre o raio e o centro dos pontos de luzes, com a finalidade de segmentar o corpo do semáforo, onde se obteve uma taxa média de detecção de 99%. As características dos semáforos foram extraídas utilizando os atributos de Haralick, com a inclusão de informações de cor e forma. Os dados gerados pela extração de características foram pré-processados utilizando a técnica de SMOTE para balancear a base de dados. O reconhecimento e a identificação do estado do semáforo foram realizados por uma rede neural artificial do tipo Multilayer Perceptron (MLP). No treinamento da rede se utilizou o algoritmo de aprendizagem backpropagation e a separação de dados para treinamento e validação. Os resultados da validação mostraram uma taxa média de reconhecimento de 98%.

Page generated in 0.0699 seconds