• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimizing Traffic Network Signals Around Railroad Crossings

Zhang, Li 07 July 2000 (has links)
The dissertation proposed an approach, named "Signal Optimization Under Rail Crossing sAfety cOnstraints"(SOURCAO), to the traffic signal control near a highway rail grade crossing (HRGC). SOURCAO targets two objectives: HRGC safety improvement (a high priority national transportation goal) and highway traffic delay reduction (a common desire for virtually all of us). Communication and data availability from ITS and the next generation train control are assumed available in SOURCAO. The first step in SOURCAO is to intelligently choose a proper preemption phase sequence to promote HRGC safety. An inference engine is designed in place of traditional traffic signal preemption calls to prevent the queue from backing onto HRGC. The potential hazard is dynamically examined as to whether any queuing vehicle stalls on railroad tracks. The inference engine chooses the appropriate phase sequence to eliminate the hazardous situation. The second step in SOURCAO is to find the optimized phase length. The optimization process uses the network traffic delay (close to the control delay) at the intersections within HRGC vicinities as an objective function. The delay function is approximated and represented by multilayer perceptron neural network (off-line). After the function was trained and obtained, an optimization algorithm named Successive Quadratic Programming (SQP) searches the length of phases (on-line) by minimizing the delay function. The inference engine and proposed delay model in optimization take the on-line surveillance detector data and HRGC closure information as input. By integrating artificial intelligence and optimization technologies, the independent simulation evaluation of SOURCAO by TSIS/CORSIM demonstrated that the objectives are reached. The average network delay for 20 runs of simulation evaluation is reduced over eight percent by a t-test while the safety of HRGC is promoted. The sensitivity tests demonstrate that SOURCAO works efficiently under light and heavy traffic conditions, as well as a wide range of HRGC closure times. / Ph. D.
2

Optimal Integrated Dynamic Traffic Assignment and Signal Control for Evacuation of Large Traffic Networks with Varying Threat Levels

Nassir, Neema January 2013 (has links)
This research contributes to the state of the art and state of the practice in solving a very important and computationally challenging problem in the areas of urban transportation systems, operations research, disaster management, and public policy. Being a very active topic of research during the past few decades, the problem of developing an efficient and practical strategy for evacuation of real-sized urban traffic networks in case of disasters from different causes, quickly enough to be employed in immediate disaster management scenarios, has been identified as one of the most challenging and yet vital problems by many researchers. More specifically, this research develops fast methods to find the optimal integrated strategy for traffic routing and traffic signal control to evacuate real-sized urban networks in the most efficient manner. In this research a solution framework is proposed, developed and tested which is capable of solving these problems in very short computational time. An efficient relaxation-based decomposition method is proposed, implemented for two evacuation integrated routing and signal control model formulations, proven to be optimal for both formulations, and verified to reduce the computational complexity of the optimal integrated routing and signal control problem. The efficiency of the proposed decomposition method is gained by reducing the integrated optimal routing and signal control problem into a relaxed optimal routing problem. This has been achieved through an insight into intersection flows in the optimal routing solution: in at least one of the optimal solutions of the routing problem, each street during each time interval only carries vehicles in at most one direction. This property, being essential to the proposed decomposition method, is called "unidirectionality" in this dissertation. The conditions under which this property exists in the optimal evacuation routing solution are identified, and the existence of unidirectionality is proven for: (1) the common Single-Destination System-Optimal Dynamic Traffic Assignment (SD-SODTA) problem, with the objective to minimize the total time spent in the threat area; and, (2) for the single-destination evacuation problem with varying threat levels, with traffic models that have no spatial queue propagation. The proposed decomposition method has been implemented in compliance with two widely-accepted traffic flow models, the Cell Transmission Model (CTM) and the Point Queue (PQ) model. In each case, the decomposition method finds the optimal solution for the integrated routing and signal control problem. Both traffic models have been coded and applied to a realistic real-size evacuation scenario with promising results. One important feature that is explored is the incorporation of evacuation safety aspects in the optimization model. An index of the threat level is associated with each link that reflects the adverse effects of traveling in a given threat zone on the safety and health of evacuees during the process of evacuation. The optimization problem is then formulated to minimize the total exposure of evacuees to the threat. A hypothetical large-scale chlorine gas spill in a high populated urban area (downtown Tucson, Arizona) has been modeled for testing the evacuation models where the network has varying threat levels. In addition to the proposed decomposition method, an efficient network-flow solution algorithm is also proposed to find the optimal routing of traffic in networks with several threat zones, where the threat levels may be non-uniform across different zones. The proposed method can be categorized in the class of "negative cycle canceling" algorithms for solving minimum cost flow problems. The unique feature in the proposed algorithm is introducing a multi-source shortest path calculation which enables the efficient detection and cancellation of negative cycles. The proposed method is proven to find the optimal solution, and it is also applied to and verified for a mid-size test network scenario.

Page generated in 0.1155 seconds