• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 2
  • Tagged with
  • 15
  • 15
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Automatická analýza dopravy z videa: Rozpoznání typů vozidel a automatické měření rychlosti / Automatic Traffic Video Surveillance: Fine-Grained Recognition of Vehicles and Automatic Speed Measurement

Sochor, Jakub January 2018 (has links)
V rámci této dizertační práce se zaměřuji na Inteligentní dopravní systémy a Počítačové vidění - především automatické měření rychlosti a rozpoznání automobilů podle typů.  Rozpoznání automobilů podle typů je úkol, ve kterém system má predikovat přesný typ (např. Škoda Octavia combi mk2) pro daný obrázek automobilu. Publikoval jsem dva články, které popisují navržený přístup k tomuto problému a tvoří jádro této dizertace. Prezentovaná metoda je založena na 3D obalových kvádrech postavených okolo automobilů, které jsou následně využity pro rozbalení obrázku automobilu do roviny a tudíž normalizaci vstupu neuronové sítě, která dělá následné rozpoznání. Přístup byl dále rozpracován v druhé publikaci, kde je navržena metoda pro určení tohoto 3D obalového kvádru z jediného obrázku - tudíž není nutné mít zkalibrovanou kameru. Experimentální výsledky ukazují, že navržená metoda zlepšuje úspěšnost rozpoznání o 12 procentních bodů - chyba rozpoznání je redukována o 50 procent.Při měření rychlosti má systém za úkol odhadnout rychlost projíždějících aut z videa. Cílem je také, ať měření probíhá plně automaticky bez jakékoli manuální kalibrace. Jelikož neexistoval žádný dataset, který by obsahoval velké množství průjezdů s přesně změřenou rychlostí, tak jsme nejprve takovýto dataset pořídili. Dále jsem navrhnul metodu pro plně automatickou kalibraci dopravní dohledové kamery což umožňuje měřit rychlost automobilů pozorovaných touto kamerou. Metoda je založena na odhadu kalibrace pomocí detekovaných úběžníků scény a následného zarovnání 3D modelů několika běžných typů automobilů. Experimentální výsledky ukazují, že navržená metoda dosahuje průměrné chyby měření rychlosti 1,10 km/h.
12

Sistema automático para obtenção de parâmetros do tráfego veicular a partir de imagens de vídeo usando OpenCV / Automatic system to obtain traffic parameters from video images based on OpenCV

André Luiz Barbosa Nunes da Cunha 08 November 2013 (has links)
Esta pesquisa apresenta um sistema automático para extrair dados de tráfego veicular a partir do pós-processamento de vídeos. Os parâmetros macroscópicos e microscópicos do tráfego são derivados do diagrama espaço-tempo, que é obtido pelo processamento das imagens de tráfego. A pesquisa fundamentou-se nos conceitos de Visão Computacional, programação em linguagem C++ e a biblioteca OpenCV para o desenvolvimento do sistema. Para a detecção dos veículos, duas etapas foram propostas: modelagem do background e segmentação dos veículos. Uma imagem sem objetos (background) pode ser determinada a partir das imagens do vídeo através de vários modelos estatísticos disponíveis na literatura especializada. A avaliação de seis modelos estatísticos indicou o Scoreboard (combinação de média e moda) como o melhor método de geração do background atualizado, por apresentar eficiente tempo de processamento de 18 ms/frame e 95,7% de taxa de exatidão. A segunda etapa investigou seis métodos de segmentação, desde a subtração de fundo até métodos de segmentação por textura. Dentre os descritores de textura, é apresentado o LFP, que generaliza os demais descritores. Da análise do desempenho desses métodos em vídeos coletados em campo, conclui-se que o tradicional método Background Subtraction foi o mais adequado, por apresentar o melhor tempo de processamento (34,4 ms/frame) e a melhor taxa de acertos totais com 95,1% de média. Definido o método de segmentação, foi desenvolvido um método para se definir as trajetórias dos veículos a partir do diagrama espaço-tempo. Comparando-se os parâmetros de tráfego obtidos pelo sistema proposto com medidas obtidas em campo, a estimativa da velocidade obteve uma taxa de acerto de 92,7%, comparado com medidas de velocidade feitas por um radar; por outro lado, a estimativa da taxa de fluxo de tráfego foi prejudicada por falhas na identificação da trajetória do veículo, apresentando valores ora acima, ora abaixo dos obtidos nas coletas manuais. / This research presents an automatic system to collect vehicular traffic data from video post-processing. The macroscopic and microscopic traffic parameters are derived from a space-time diagram, which is obtained by traffic image processing. The research was based on the concepts of Computer Vision, programming in C++, and OpenCV library to develop the system. Vehicle detection was divided in two steps: background modeling and vehicle segmentation. A background image can be determined from the video sequence through several statistical models available in literature. The evaluation of six statistical models indicated Scoreboard (combining mean and mode) as the best method to obtain an updated background, achieving a processing time of 18 ms/frame and 95.7% accuracy rate. The second step investigated six segmentation methods, from background subtraction to texture segmentation. Among texture descriptors, LFP is presented, which generalizes other descriptors. Video images collected on highways were used to analyze the performance of these methods. The traditional background subtraction method was found to be the best, achieving a processing time of 34.4 ms/frame and 95.1% accuracy rate. Once the segmentation process was chosen, a method to determine vehicle trajectories from the space-time diagram was developed. Comparing the traffic parameters obtained by the proposed system to data collected in the field, the estimates for speed were found to be very good, with 92.7% accuracy, when compared with radar-measured speeds. On the other hand, flow rate estimates were affected by failures to identify vehicle trajectories, which produced values above or below manually collected data.
13

Sistema automático para obtenção de parâmetros do tráfego veicular a partir de imagens de vídeo usando OpenCV / Automatic system to obtain traffic parameters from video images based on OpenCV

Cunha, André Luiz Barbosa Nunes da 08 November 2013 (has links)
Esta pesquisa apresenta um sistema automático para extrair dados de tráfego veicular a partir do pós-processamento de vídeos. Os parâmetros macroscópicos e microscópicos do tráfego são derivados do diagrama espaço-tempo, que é obtido pelo processamento das imagens de tráfego. A pesquisa fundamentou-se nos conceitos de Visão Computacional, programação em linguagem C++ e a biblioteca OpenCV para o desenvolvimento do sistema. Para a detecção dos veículos, duas etapas foram propostas: modelagem do background e segmentação dos veículos. Uma imagem sem objetos (background) pode ser determinada a partir das imagens do vídeo através de vários modelos estatísticos disponíveis na literatura especializada. A avaliação de seis modelos estatísticos indicou o Scoreboard (combinação de média e moda) como o melhor método de geração do background atualizado, por apresentar eficiente tempo de processamento de 18 ms/frame e 95,7% de taxa de exatidão. A segunda etapa investigou seis métodos de segmentação, desde a subtração de fundo até métodos de segmentação por textura. Dentre os descritores de textura, é apresentado o LFP, que generaliza os demais descritores. Da análise do desempenho desses métodos em vídeos coletados em campo, conclui-se que o tradicional método Background Subtraction foi o mais adequado, por apresentar o melhor tempo de processamento (34,4 ms/frame) e a melhor taxa de acertos totais com 95,1% de média. Definido o método de segmentação, foi desenvolvido um método para se definir as trajetórias dos veículos a partir do diagrama espaço-tempo. Comparando-se os parâmetros de tráfego obtidos pelo sistema proposto com medidas obtidas em campo, a estimativa da velocidade obteve uma taxa de acerto de 92,7%, comparado com medidas de velocidade feitas por um radar; por outro lado, a estimativa da taxa de fluxo de tráfego foi prejudicada por falhas na identificação da trajetória do veículo, apresentando valores ora acima, ora abaixo dos obtidos nas coletas manuais. / This research presents an automatic system to collect vehicular traffic data from video post-processing. The macroscopic and microscopic traffic parameters are derived from a space-time diagram, which is obtained by traffic image processing. The research was based on the concepts of Computer Vision, programming in C++, and OpenCV library to develop the system. Vehicle detection was divided in two steps: background modeling and vehicle segmentation. A background image can be determined from the video sequence through several statistical models available in literature. The evaluation of six statistical models indicated Scoreboard (combining mean and mode) as the best method to obtain an updated background, achieving a processing time of 18 ms/frame and 95.7% accuracy rate. The second step investigated six segmentation methods, from background subtraction to texture segmentation. Among texture descriptors, LFP is presented, which generalizes other descriptors. Video images collected on highways were used to analyze the performance of these methods. The traditional background subtraction method was found to be the best, achieving a processing time of 34.4 ms/frame and 95.1% accuracy rate. Once the segmentation process was chosen, a method to determine vehicle trajectories from the space-time diagram was developed. Comparing the traffic parameters obtained by the proposed system to data collected in the field, the estimates for speed were found to be very good, with 92.7% accuracy, when compared with radar-measured speeds. On the other hand, flow rate estimates were affected by failures to identify vehicle trajectories, which produced values above or below manually collected data.
14

Měření rychlosti vozidel pomocí stereo kamery / Vehicle Speed Measurement Using Stereo Camera Pair

Najman, Pavel January 2021 (has links)
Tato práce se snaží najít odpověď na otázku, zda je v současnosti možné autonomně měřit rychlost vozidel pomocí stereoskopické měřící metody s průměrnou chybou v rozmezí 1 km/h, maximální chybou v rozmezí 3 km/h a směrodatnou odchylkou v rozmezí 1 km/h. Tyto rozsahy chyb jsou založené na požadavcích organizace OIML, jejichž doporučení jsou základem metrologických legislativ mnoha zemí. Pro zodpovězení této otázky je zformulována hypotéza, která je následně testována. Metoda, která využívá stereo kameru pro měření rychlosti vozidel je navržena a experimentálně vyhodnocena. Výsledky pokusů ukazují, že navržená metoda překonává výsledky dosavadních metod. Průměrná chyba měření je přibližně 0.05 km/h, směrodatná odchylka chyby je menší než 0.20 km/h a maximální absolutní hodnota chyby je menší než 0.75 km/h. Tyto výsledky jsou v požadovaném rozmezí a potvrzují tedy testovanou hypotézu.
15

Měření rychlosti automobilů z dohledové kamery / Speed Measurement of Vehicles from Surveillance Camera

Jaklovský, Samuel January 2018 (has links)
This master's thesis is focused on fully automatic calibration of traffic surveillance camera, which is used for speed measurement of passing vehicles. Thesis contains and describes theoretical information and algorithms related to this issue. Based on this information and algorithms, a comprehensive system design for automatic calibration and speed measurement was built. The proposed system has been successfully implemented. The implemented system is optimized to process the smallest portion of the video input for the automatic calibration of the camera. Calibration parameters are obtained after processing only two and half minutes of input video. The accuracy of the implemented system was evaluated on the dataset BrnoCompSpeed. The speed measurement error using the automatic calibration system is 8.15 km/h. The error is mainly caused by inaccurate scale acquisition, and when it is replaced by manually obtained scale, the error is reduced to 2.45 km/h. The speed measuring system itself has an error of only 1.62 km/h (evaluated using manual calibration parameters).

Page generated in 0.0639 seconds