• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Unsteady airfoil flow control via a dynamically deflected trailing-edge flap

Gerontakos, Panayiote January 2008 (has links)
No description available.
2

The Effect of Shear Sheltering on Trailing Edge Noise: A Theoretical Study

Unknown Date (has links)
Shear sheltering is defined as the effect of the mean flow velocity profile in a boundary layer on the turbulence caused by an imposed gust. In aeroacoustic applications turbulent boundary layers interacting with blade trailing edges or roughness elements are an important source of sound, and the effect of shear sheltering on these noise sources has not been studied in detail. Since the surface pressure spectrum below the boundary layer is the primary driver of trailing edge and roughness noise, this thesis considers the effect that shear sheltering has on the surface pressure spectrum below a boundary layer. This study presents a model of the incoming turbulence as a vortex sheet at a specified height above the surface and shows, using canonical boundary layers and approximations to numerical results, how the mean flow velocity profile can be manipulated to alter the surface pressure spectrum and hence the associated trailing edge noise. The results from this model demonstrate that different mean velocity profiles drive significant changes in the unsteady characteristics of the flow. The surface pressure fluctuations results also suggest that boundary layers where the shear in the mean velocity profile is significant can be beneficial for the reduction of trailing edge noise at particular frequencies. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2020. / FAU Electronic Theses and Dissertations Collection
3

Dynamic control of aerodynamic forces on a moving platform using active flow control

Brzozowski, Daniel Paul 15 November 2011 (has links)
The unsteady interaction between trailing edge aerodynamic flow control and airfoil motion in pitch and plunge is investigated in wind tunnel experiments using a two degree-of-freedom traverse which enables application of time-dependent external torque and forces by servo motors. The global aerodynamic forces and moments are regulated by controlling vorticity generation and accumulation near the trailing edge of the airfoil using hybrid synthetic jet actuators. The dynamic coupling between the actuation and the time-dependent flow field is characterized using simultaneous force and particle image velocimetry (PIV) measurements that are taken phase-locked to the commanded actuation waveform. The effect of the unsteady motion on the model-embedded flow control is assessed in both trajectory tracking and disturbance rejection maneuvers. The time-varying aerodynamic lift and pitching moment are estimated from a PIV wake survey using a reduced order model based on classical unsteady aerodynamic theory. These measurements suggest that the entire flow over the airfoil readjusts within 2-3 convective time scales, which is about two orders of magnitude shorter than the characteristic time associated with the controlled maneuver of the wind tunnel model. This illustrates that flow-control actuation can be typically effected on time scales that are commensurate with the flow's convective time scale, and that the maneuver response is primarily limited by the inertia of the platform.

Page generated in 0.0954 seconds