• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multi-View Oriented 3D Data Processing / Multi-View Orientée 3D Traitement des Données

Liu, Kun 14 December 2015 (has links)
Le raffinement de nuage de points et la reconstruction de surface sont deux problèmes fondamentaux dans le traitement de la géométrie. La plupart des méthodes existantes ont été ciblées sur les données de capteur de distance et se sont avérées être mal adaptées aux données multi-vues. Dans cette thèse, deux nouvelles méthodes sont proposées respectivement pour les deux problèmes avec une attention particulière aux données multi-vues. La première méthode permet de lisser les nuages de points provenant de la reconstruction multi-vue sans endommager les données. Le problème est formulé comme une optimisation non-linéaire sous contrainte et ensuite résolu par une série de problèmes d’optimisation sans contrainte au moyen d’une méthode de barrière. La seconde méthode effectue une triangulation du nuage de points d’entrée pour générer un maillage en utilisant une stratégie de l’avancement du front pilotée par un critère de l’empilement compact de sphères. L’algorithme est simple et permet de produire efficacement des maillages de haute qualité. Les expérimentations sur des données synthétiques et du monde réel démontrent la robustesse et l’efficacité des méthodes proposées. Notre méthodes sont adaptées aux applications qui nécessitent des informations de position précises et cohérentes telles que la photogrammétrie et le suivi des objets en vision par ordinateur / Point cloud refinement and surface reconstruction are two fundamental problems in geometry processing. Most of the existing methods have been targeted at range sensor data and turned out be ill-adapted to multi-view data. In this thesis, two novel methods are proposed respectively for the two problems with special attention to multi-view data. The first method smooths point clouds originating from multi-view reconstruction without impairing the data. The problem is formulated as a nonlinear constrained optimization and addressed as a series of unconstrained optimization problems by means of a barrier method. The second method triangulates point clouds into meshes using an advancing front strategy directed by a sphere packing criterion. The method is algorithmically simple and can produce high-quality meshes efficiently. The experiments on synthetic and real-world data have been conducted as well, which demonstrates the robustness and the efficiency of the methods. The developed methods are suitable for applications which require accurate and consistent position information such photogrammetry and tracking in computer vision
2

Modélisation de scènes urbaines à partir de données aériennes / Urban scene modeling from airborne data

Verdie, Yannick 15 October 2013 (has links)
L'analyse et la reconstruction automatique de scène urbaine 3D est un problème fondamental dans le domaine de la vision par ordinateur et du traitement numérique de la géométrie. Cette thèse présente des méthodologies pour résoudre le problème complexe de la reconstruction d'éléments urbains en 3D à partir de données aériennes Lidar ou bien de maillages générés par imagerie Multi-View Stereo (MVS). Nos approches génèrent une représentation précise et compacte sous la forme d'un maillage 3D comportant une sémantique de l'espace urbain. Deux étapes sont nécessaires ; une identification des différents éléments de la scène urbaine, et une modélisation des éléments sous la forme d'un maillage 3D. Le Chapitre 2 présente deux méthodes de classifications des éléments urbains en classes d'intérêts permettant d'obtenir une compréhension approfondie de la scène urbaine, et d'élaborer différentes stratégies de reconstruction suivant le type d'éléments urbains. Cette idée, consistant à insérer à la fois une information sémantique et géométrique dans les scènes urbaines, est présentée en détails et validée à travers des expériences. Le Chapitre 3 présente une approche pour détecter la 'Végétation' incluses dans des données Lidar reposant sur les processus ponctuels marqués, combinée avec une nouvelle méthode d'optimisation. Le Chapitre 4 décrit à la fois une approche de maillage 3D pour les 'Bâtiments' à partir de données Lidar et de données MVS. Des expériences sur des structures urbaines larges et complexes montrent les bonnes performances de nos systèmes. / Analysis and 3D reconstruction of urban scenes from physical measurements is a fundamental problem in computer vision and geometry processing. Within the last decades, an important demand arises for automatic methods generating urban scenes representations. This thesis investigates the design of pipelines for solving the complex problem of reconstructing 3D urban elements from either aerial Lidar data or Multi-View Stereo (MVS) meshes. Our approaches generate accurate and compact mesh representations enriched with urban-related semantic labeling.In urban scene reconstruction, two important steps are necessary: an identification of the different elements of the scenes, and a representation of these elements with 3D meshes. Chapter 2 presents two classification methods which yield to a segmentation of the scene into semantic classes of interests. The beneath is twofold. First, this brings awareness of the scene for better understanding. Second, deferent reconstruction strategies are adopted for each type of urban elements. Our idea of inserting both semantical and structural information within urban scenes is discussed and validated through experiments. In Chapter 3, a top-down approach to detect 'Vegetation' elements from Lidar data is proposed using Marked Point Processes and a novel optimization method. In Chapter 4, bottom-up approaches are presented reconstructing 'Building' elements from Lidar data and from MVS meshes. Experiments on complex urban structures illustrate the robustness and scalability of our systems.
3

Modélisation de scènes urbaines à partir de données aeriennes

Verdie, Yannick 15 October 2013 (has links) (PDF)
L'analyse et la reconstruction automatique de scène urbaine 3D est un problème fondamental dans le domaine de la vision par ordinateur et du traitement numérique de la géométrie. Cette thèse présente des méthodologies pour résoudre le problème complexe de la reconstruction d'éléments urbains en 3D à partir de données aériennes Lidar ou bien de maillages générés par imagerie Multi-View Stereo (MVS). Nos approches génèrent une représentation précise et compacte sous la forme d'un maillage 3D comportant une sémantique de l'espace urbain. Deux étapes sont nécessaires; une identification des différents éléments de la scène urbaine, et une modélisation des éléments sous la forme d'un maillage 3D. Le Chapitre 2 présente deux méthodes de classifications des éléments urbains en classes d'intérêts permettant d'obtenir une compréhension approfondie de la scène urbaine, et d'élaborer différentes stratégies de reconstruction suivant le type d'éléments urbains. Cette idée, consistant à insérer à la fois une information sémantique et géométrique dans les scènes urbaines, est présentée en détails et validée à travers des expériences. Le Chapitre 3 présente une approche pour détecter la 'Végétation' incluses dans des données Lidar reposant sur les processus ponctuels marqués, combinée avec une nouvelle méthode d'optimisation. Le Chapitre 4 décrit à la fois une approche de maillage 3D pour les 'Bâtiments' à partir de données Lidar et de données MVS. Des expériences sur des structures urbaines larges et complexes montrent les bonnes performances de nos systèmes.

Page generated in 0.0787 seconds