Spelling suggestions: "subject:"traitement duu signal musical"" "subject:"traitement dud signal musical""
1 |
Reconnaissance d'accords à partir de signaux audio par l'utilisation de gabarits théoriquesOudre, Laurent 03 November 2010 (has links) (PDF)
Cette thèse s'inscrit dans le cadre du traitement du signal musical, en se focalisant plus particulièrement sur la transcription automatique de signaux audio en accords. En effet, depuis une dizaine d'années, de nombreux travaux visent à représenter les signaux musicaux de la façon la plus compacte et pertinente possible, par exemple dans un but d'indexation ou de recherche par similarité. La transcription en accords constitue une façon simple et robuste d'extraire l'information harmonique et rythmique des chansons et peut notamment être utilisée par les musiciens pour rejouer les morceaux. Nous proposons deux approches pour la reconnaissance automatique d'accords à partir de signaux audio, qui offrent la particularité de se baser uniquement sur des gabarits d'accords théoriques, c'est à dire sur la définition des accords. En particulier, nos systèmes ne nécessitent ni connaissance particulière sur l'harmonie du morceau, ni apprentissage. Notre première approche est déterministe, et repose sur l'utilisation conjointe de gabarits d'accords théoriques, de mesures d'ajustement et de post-traitement par filtrage. On extrait tout d'abord des vecteurs de chroma du signal musical, qui sont ensuite comparés aux gabarits d'accords grâce à plusieurs mesures d'ajustement. Le critère de reconnaissance ainsi formé est ensuite filtré, afin de prendre en compte l'aspect temporel de la tâche. L'accord finalement détecté sur chaque trame est celui minimisant le critère de reconnaissance. Cette méthode a notamment été présentée lors d'une évaluation internationale (MIREX 2009) et a obtenu des résultats très honorables. Notre seconde approche est probabiliste, et réutilise certains éléments présents dans notre méthode déterministe. En faisant un parallèle entre les mesures d'ajustement utilisées dans l'approche déterministe et des modèles de probabilité, on peut définir un cadre probabiliste pour la reconnaissance d'accords. Dans ce cadre, les probabilités de chaque accord dans le morceau sont évaluées grâce à un algorithme Espérance-Maximisation (EM). Il en résulte la détection, pour chaque chanson, d'un vocabulaire d'accords adapté, qui permet l'obtention d'une meilleure transcription en accords. Cette méthode est comparée à de nombreux systèmes de l'état de l'art, grâce à plusieurs corpus et plusieurs métriques, qui permettent une évaluation complète des différents aspects de la tâche.
|
2 |
Reconnaissance d'accords à partir de signaux audio par l'utilisation de gabarits théoriquesOudre, Laurent 03 November 2010 (has links) (PDF)
Cette thèse s'inscrit dans le cadre du traitement du signal musical, en se focalisant plus particulièrement sur la transcription automatique de signaux audio en accords. En effet, depuis une dizaine d'années, de nombreux travaux visent à représenter les signaux musicaux de la façon la plus compacte et pertinente possible, par exemple dans un but d'indexation ou de recherche par similarité. La transcription en accords constitue une façon simple et robuste d'extraire l'information harmonique et rythmique des chansons et peut notamment être utilisée par les musiciens pour rejouer les morceaux. Nous proposons deux approches pour la reconnaissance automatique d'accords à partir de signaux audio, qui offrent la particularité de se baser uniquement sur des gabarits d'accords théoriques, c'est à dire sur la définition des accords. En particulier, nos systèmes ne nécessitent ni connaissance particulière sur l'harmonie du morceau, ni apprentissage. Notre première approche est déterministe, et repose sur l'utilisation conjointe de gabarits d'accords théoriques, de mesures d'ajustement et de post-traitement par filtrage. On extrait tout d'abord des vecteurs de chroma du signal musical, qui sont ensuite comparés aux gabarits d'accords grâce à plusieurs mesures d'ajustement. Le critère de reconnaissance ainsi formé est ensuite filtré, afin de prendre en compte l'aspect temporel de la tâche. L'accord finalement détecté sur chaque trame est celui minimisant le critère de reconnaissance. Cette méthode a notamment été présentée lors d'une évaluation internationale (MIREX 2009) et a obtenu des résultats très honorables. Notre seconde approche est probabiliste, et réutilise certains éléments présents dans notre méthode déterministe. En faisant un parallèle entre les mesures d'ajustement utilisées dans l'approche déterministe et des modèles de probabilité, on peut définir un cadre probabiliste pour la reconnaissance d'accords. Dans ce cadre, les probabilités de chaque accord dans le morceau sont évaluées grâce à un algorithme Espérance-Maximisation (EM). Il en résulte la détection, pour chaque chanson, d'un vocabulaire d'accords adapté, qui permet l'obtention d'une meilleure transcription en accords. Cette méthode est comparée à de nombreux systèmes de l'état de l'art, grâce à plusieurs corpus et plusieurs métriques, qui permettent une évaluation complète des différents aspects de la tâche.
|
3 |
Décomposition de spectrogrammes musicaux informée par des modèles de synthèse spectrale. Modélisation des variations temporelles dans les éléments sonores.Hennequin, Romain 21 November 2011 (has links) (PDF)
Cette thèse propose de nouvelles méthodes de décomposition automatique de spectrogrammes de signaux musicaux. Les décompositions proposées sont issues de la factorisation en matrices non-négatives (NMF), puissante technique de réduction de rang réputée pour fournir une décomposition sur un petit nombre de motifs fréquentiels automatiquement extraits des données ayant généralement un sens perceptif. La NMF ne permet cependant pas de modéliser de façon efficace certaines variations temporelles d'éléments sonores non-stationnaires communément rencontrées dans la musique. Cette thèse propose donc d'introduire dans la NMF des modèles génératifs de spectrogrammes musicaux basés sur des modèles classiques de synthèse sonore afin de pouvoir prendre en compte deux types de variations courantes : les variations d'enveloppe spectrale (sons d'instruments à cordes métalliques libres...) et les variations de fréquence fondamentale (vibrato, prosodie...). L'introduction de modèles de synthèse simples dans la NMF permet de proposer des décompositions capables de prendre en compte ces variations : l'utilisation d'un modèle de synthèse source/ filtre permet de modéliser les variations spectrales de certains objets musicaux au cours du temps. L'utilisation d'un modèle d'atomes harmoniques paramétriques inspiré de la synthèse additive ou bien l'utilisation d'un modèle inspiré de la synthèse par table d'onde qui utilise des transformations d'un unique atome de base afin de recréer toute la tessiture de chaque instrument permettent de modéliser les variations de fréquence fondamentale. Une application de séparation de sources et une de transformation sélective du son sont également présentées.
|
Page generated in 0.1004 seconds