• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Expression, sequencing and transfection studies of the hepatitis B virus x gene from human hepatocellular carcinoma tissues.

January 2000 (has links)
Chan Ming Lok. / Thesis submitted in: December 1999. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 93-108). / Abstracts in English and Chinese. / Ackowledgments --- p.i / Abstract in English --- p.ii / Abstract in Chinese --- p.iii / List of Abbreviations --- p.iv / List of Tables --- p.v / List of Figures --- p.vi / Chapter Chapter 1 --- Introduction and Objectives / Chapter 1.1 --- Hepatocellular Carcinoma --- p.1 / Chapter 1.1.1 --- Epidemiology --- p.1 / Chapter 1.1.2 --- Geographical Distribution --- p.1 / Chapter 1.1.3 --- Sex and Age --- p.1 / Chapter 1.1.4 --- Etiology --- p.2 / Chapter 1.1.5 --- Molecular Basis of HCC --- p.3 / Chapter 1.1.6 --- Situation in China and Hong Kong --- p.4 / Chapter 1.2 --- The Hepatitis B Virus --- p.5 / Chapter 1.2.1 --- Morphology --- p.5 / Chapter 1.2.2 --- Structure of the HBV Genome --- p.6 / Chapter 1.2.3 --- Functional Domains of the HBV Genome --- p.9 / Chapter 1.2.4 --- Pathogenesis of HBV Infection --- p.11 / Chapter 1.3 --- HBx --- p.12 / Chapter 1.3.1 --- The HBV x Gene --- p.12 / Chapter 1.3.2 --- The HBX Protein --- p.13 / Chapter 1.3.3 --- "Preferential HBX Expression in Sera, Hepatitis, Cirrhosis and HCC" --- p.13 / Chapter 1.3.4 --- Cellular Localization of HBX --- p.14 / Chapter 1.3.5 --- Animal Studies --- p.15 / Chapter 1.3.6 --- Functional Studies on HBX --- p.15 / Chapter 1.3.7 --- Variations in the HBx Gene --- p.21 / Chapter 1.4 --- Objectives of this Study --- p.24 / Chapter Chapter 2 --- Methods and Materials Methods / Chapter 2.1 --- Paraffin Embedding of Patient Tissue Samples --- p.26 / Chapter 2.1.1 --- Tissue Processing --- p.26 / Chapter 2.1.2 --- Paraffin Embedding of Tissue Samples --- p.26 / Chapter 2.2 --- Sectioning of Paraffin Embedded Tissue Sections --- p.26 / Chapter 2.3 --- Immunohistochemical Staining of Paraffin Embedded Tissue Sections --- p.26 / Chapter 2.3.1 --- Dewaxing of Paraffin-Embedded Tissue Sections --- p.26 / Chapter 2.3.2 --- Rehydration of Tissue Sections --- p.27 / Chapter 2.3.3 --- Antigen Retrieval --- p.27 / Chapter 2.3.4 --- Quenching of Endogenous Hydrogen Peroxidase --- p.27 / Chapter 2.3.5 --- Blocking of Endogenous Biotin and Non-Specific Protein Binding --- p.27 / Chapter 2.3.6 --- Antibody Incubation and Color Development --- p.27 / Chapter 2.3.7 --- Counterstaining and Coverslip Mounting --- p.28 / Chapter 2.3.8 --- Interpretation of Immunostaining Results --- p.28 / Chapter 2.4 --- DNA Extraction from HCC Tissues --- p.28 / Chapter 2.4.1 --- Sectioning of Frozen HCC Specimens --- p.28 / Chapter 2.4.2 --- Proteinase K Digestion and Phenol Chloroform Extraction --- p.29 / Chapter 2.4.3 --- Ethanol Precipitation and Re-suspension in Tris-EDTA (TE) Buffer --- p.29 / Chapter 2.5 --- Quantitation and Purity Check of Extracted DNA --- p.29 / Chapter 2.6 --- Quality Check for Extracted Genomic DNA --- p.30 / Chapter 2.6.1 --- Agarose Gel Electrophoresis --- p.30 / Chapter 2.6.2 --- Polymerase Chain Reaction (PCR) of the β-globin Gene --- p.30 / Chapter 2.6.3 --- Analysis of PCR Fragments by Agarose Gel Electrophoresis --- p.30 / Chapter 2.7 --- Polymerase Chain Reaction Amplification of HBs and HBx Genes of the Hepatitis B Virus --- p.31 / Chapter 2.8 --- Southern Blot of HBx PCR Fragments --- p.31 / Chapter 2.8.1 --- Immobilization of DNA onto a Positively Charged Nylon Membrane and Pre-hybridization --- p.31 / Chapter 2.8.2 --- Radio-labeling of an HBV Probe --- p.32 / Chapter 2.8.3 --- Hybridization of a 32P-labeled HBV Probe and Film Exposure --- p.32 / Chapter 2.9 --- Cloning of PCR Fragments into pGEM®-T Vector for Sequencing --- p.33 / Chapter 2.9.1 --- Gel Extraction and Purification --- p.33 / Chapter 2.9.2 --- Ligation --- p.33 / Chapter 2.10 --- Transformation of Competent DH5a cells --- p.34 / Chapter 2.10.1 --- Preparation of Competent DH5α Using Calcium Chloride --- p.34 / Chapter 2.10.2 --- Heat Shock of Competent DH5α Cells --- p.34 / Chapter 2.10.3 --- Plating of Transformed Cells onto LB Agar Plates --- p.34 / Chapter 2.10.4 --- Screening of Transformants for Inserts --- p.35 / Chapter 2.11 --- Miniprep of Plasmid DNA --- p.35 / Chapter 2.11.1 --- Inoculation of Bacterial Clones --- p.35 / Chapter 2.11.2 --- DNA Extraction by Alkaline Lysis and Phenol/Chloroform --- p.35 / Chapter 2.11.3 --- Ethanol Precipitation and Re-suspension in TE Buffer --- p.35 / Chapter 2.11.4 --- Confirmation of Positive Clones --- p.36 / Chapter 2.12 --- Sequencing of pGEM®-T Cloned HBx PCR Fragments --- p.36 / Chapter 2.13 --- Construction of the HBx-GFP Plasmid --- p.36 / Chapter 2.13.1 --- PCR Amplification of HBx Gene Inserts --- p.36 / Chapter 2.13.2 --- Confirmation of HBx Insert Sequence by DNA Sequencing --- p.37 / Chapter 2.13.3 --- Restriction Digest of HBx-pGEM®-T Plasmids to Obtain HBx Inserts --- p.37 / Chapter 2.13.4 --- Restriction Digest of pEGFP-Nl Cloning Vector for Cloning --- p.37 / Chapter 2.13.5 --- Ligation of HBx Inserts into the pEGFP Cloning Vector --- p.37 / Chapter 2.14 --- Large Scale Plasmid DNA Preparation --- p.38 / Chapter 2.15 --- Cell Culture --- p.39 / Chapter 2.16 --- Transfection using LipofectAminéёØ --- p.39 / Chapter 2.16.1 --- Seeding of Cells for Coverslip Growth --- p.39 / Chapter 2.16.2 --- Transfection using LipofecAminéёØ --- p.39 / Chapter 2.17 --- Cell Fixation and DAPI Staining Materials --- p.40 / Chapter 2.18 --- Chemicals --- p.41 / Chapter 2.19 --- Antibodies --- p.41 / Chapter 2.20 --- "Formalin-fixed, Paraffin Embedded Tissues of HCC Tissues from Xiamen" --- p.41 / Chapter 2.21 --- Frozen Liver Tissues --- p.41 / Chapter 2.22 --- PCR Reagents --- p.43 / Chapter 2.23 --- Primers --- p.43 / Chapter 2.24 --- Plasmid --- p.43 / Chapter 2.25 --- Enzymes --- p.43 / Chapter 2.26 --- Ligation Reagents --- p.43 / Chapter 2.27 --- Cloning Vectors --- p.45 / Chapter 2.28 --- Competent Cell --- p.45 / Chapter 2.29 --- Hela and HepG2 Cell Line --- p.45 / Chapter Chapter 3 --- Results / Chapter 3.1 --- Hepatitis B Virus Status of HCC Patients from Hong Kong and Xiamen --- p.46 / Chapter 3.2 --- Immunohistochemical Studies of the HBx Protein in Hong Kong and Xiamen HCC --- p.46 / Chapter 3.2.1 --- Cross Reaction of Anti-99 with Cytokeratin 18 (CK18) --- p.46 / Chapter 3.2.2 --- HBx Expression in HCC Patient Tissue Samples from Hong Kong --- p.50 / Chapter 3.2.3 --- HBxAg Staining in HCC Tissue Samples from Xiamen --- p.50 / Chapter 3.3 --- Agarose Gel Electrophoresis of DNA Extracted from Frozen Liver Tissues --- p.50 / Chapter 3.4 --- PCR Amplification of the β-globin Gene --- p.55 / Chapter 3.5 --- PCR Amplification of the HBs Gene from Liver Samples of HCC Patients from Hong Kong --- p.55 / Chapter 3.6 --- PCR Amplification of the HBx Gene from Liver Samples of HCC Patients from Hong Kong --- p.55 / Chapter 3.7 --- Amplification of the HBx Gene from Serum Samples of Chronic Hepatitis B Virus from Hong Kong Using Nested PCR --- p.61 / Chapter 3.8 --- Southern Blot of HBx PCR Fragments --- p.61 / Chapter 3.9 --- Cloning and Sequencing of the HBx Gene in HCC and Chronic Hepatitis B Patient Samples from Hong Kong --- p.61 / Chapter 3.10 --- Expression Pattern of Wild-type HBx-GFP Fusion Protein in Transiently Transfected HeLa and HepG2 Cells --- p.73 / Chapter 3.11 --- Expression Patterns of HBx-GFP with and without Mutations at Codons 130 and 131 in HeLa and HepG2 Cell Line --- p.78 / Chapter 3.12 --- Growth Kinetics of HeLa Cells Transfected with GFP and Wild-type HBx-GFP with and without Mutations in Codons 130 and131 --- p.81 / Chapter Chapter 4 --- Discussion / Chapter 4.1 --- HBxAg Expression in Tumorous and Surrounding Non-tumorous Tissues --- p.83 / Chapter 4.2 --- "Detection of the HBx Gene in Sera, Non-tumorous and Tumorous Tissues" --- p.84 / Chapter 4.3 --- HBx Gene Mutations in Chronic Hepatitis and HCC --- p.85 / Chapter 4.3.1 --- Codon 127 (HBV nt 1752-1754) --- p.85 / Chapter 4.3.2 --- Codons 130 and 131 (HBV nt 1761-1766) --- p.86 / Chapter 4.3.3 --- Lack of Correlation between HBx Gene Mutations and Lack of HBxAg Expression --- p.87 / Chapter 4.4 --- Cellular Localization of HBxAg in Transiently Transfected Cells Lines --- p.88 / Chapter 4.5 --- Functional Difference Between Wild-type and Mutant HBX Protein --- p.89 / Chapter Chapter 5 --- Conclusions and Directions for Further Studies / Chapter 5.1 --- Conclusions --- p.91 / Chapter 5.2 --- Directions for Further Studies --- p.92 / References --- p.93 / Appendix / Chapter A1 --- Recipes of Reagents Used in this Study --- p.109 / Chapter A2 --- Schematic Setup of Downward Capillary Transfer of DNA --- p.112 / Chapter A3 --- Circle Map of the pGEM®-T Cloning Vector and Construct of the HBx-pGEM®-T Plasmid --- p.113 / Chapter A4 --- Circle Map of the pEGFP-Nl Cloning Vector and Construct of the HBx-GFP Plasmid --- p.114
2

Over expression, purification and characterization of hepatitis B virus X protein (HBx) and its interacting partner HBx - interacting protein (XIP).

January 2002 (has links)
by Cheung Yuk Yin. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves xx-xxviii). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.ii / 摘要 --- p.iii / Table of Content --- p.iv / Abbreviations / for Amino Acids --- p.viii / for Standard Genetic Code --- p.ix / for Units --- p.x / for Prefixes --- p.xi / for Terms commonly used in the report --- p.xii / List of Figures --- p.xiii / List of Tables --- p.xiv / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Epidemiology of Hepatitis B Virus (HBV) --- p.1 / Chapter 1.2 --- Relationship between Hepatitis B Virus and Hepatocellular Carcinoma --- p.2 / Chapter 1.3 --- Brief Description of HBV Genome --- p.2 / Chapter 1.4 --- Possible Roles of HBx in Hepatocellular Carcinoma --- p.4 / Chapter 1.5 --- Novel Interacting Partner of HBx - HBx-lnteracting Protein (XIP) --- p.6 / Chapter 1.6 --- Objective --- p.6 / Chapter Chapter 2 --- Methodology / Chapter 2.1 --- Information of the HBx and XIP Clones --- p.7 / Chapter 2.2 --- "Information of the Expression Vectors (pRSETA, 6xHis-pRSETA and pET8C)" --- p.7 / Chapter 2.3 --- Sub-Cloning of HBx and XIP into Different Vectors --- p.9 / Chapter 2.3.1 --- Design of Primers for Cloning of HBx and XIP into Different Vectors --- p.9 / Chapter 2.3.2 --- Polymerase Chain Reaction (PCR) Protocol --- p.12 / Chapter 2.3.3 --- Enzyme Digestion Reaction Protocol --- p.14 / Chapter 2.3.4 --- Ligation Protocol --- p.16 / Chapter 2.3.5 --- Preparation of Competent Cells --- p.17 / Chapter 2.3.6 --- Transformation --- p.18 / Chapter 2.3.7 --- Gel Extraction Protocol --- p.19 / Chapter 2.3.7.1 --- Life Technologies CONCERT´ёØ Rapid Gel Extraction System --- p.19 / Chapter 2.3.7.2 --- QIAGEN Gel Extraction Kit --- p.20 / Chapter 2.3.8 --- Plasmid Preparation Protocol --- p.22 / Chapter 2.3.8.1 --- Life Technologies CONCERT´ёØ Rapid Plasmid Minipreps --- p.22 / Chapter 2.3.8.2 --- QIAGEN Plasmid Maxi Kit --- p.23 / Chapter 2.4 --- Expression of HBx and XIP in E. coli Strain C41 (DE3) --- p.25 / Chapter 2.4.1 --- Transformation --- p.25 / Chapter 2.4.2 --- Expression of HBx and 6xHis-HBx in E. coli Strain C41 (DE3) --- p.26 / Chapter 2.4.3 --- Expression of XIP in E. coli Strain C41 (DE3) --- p.27 / Chapter 2.5 --- Preparation of Buffers for Chromatography and Circular Dichroism Spectrum Measurement --- p.28 / Chapter 2.6 --- Purification and Refolding of HBx and His-Tagged HBx --- p.28 / Chapter 2.6.1 --- Washing of HBx and His-Tagged HBx Inclusion Bodies --- p.28 / Chapter 2.6.2 --- His-Tagged HBx Purification by Affinity Chromatography --- p.29 / Chapter 2.6.3 --- HBx Purification by Size Exclusion Chromatography --- p.30 / Chapter 2.6.4 --- Refolding of HBx and His-Tagged HBx by Oxidative Dialysis --- p.30 / Chapter 2.7 --- Purification of XIP --- p.33 / Chapter 2.7.1 --- Screening of Chromatographic Conditions for the Purification of XIP --- p.33 / Chapter 2.7.2 --- XIP 1st Step of Purification by Hydrophobic Interaction Chromatography --- p.34 / Chapter 2.7.3 --- XIP 2nd step of Purification by Size Exclusion Chromatography --- p.34 / Chapter 2.8 --- Chemical Denaturation Experiment of HBx and XIP --- p.36 / Chapter 2.8.1 --- Preparation of Urea Buffers for the Chemical Denaturation of HBx --- p.37 / Chapter 2.8.2 --- Preparation of Different GdnHCI Buffer for the Chemical Denaturation of XIP --- p.38 / Chapter 2.8.3 --- Calculation for Chemical Denaturation Experiment --- p.39 / Chapter 2.8.3.1 --- Protein Concentration Calculation --- p.39 / Chapter 2.8.3.2 --- Residual Molar Elipticity Calculation --- p.39 / Chapter 2.8.3.3 --- Free Energy Change (ΔGu) Calculation --- p.40 / Chapter 2.9 --- Two-dimensional Heteronuclear Nuclear Magnetic Resonance (NMR) Experiment --- p.41 / Chapter 2.10 --- Interaction Confirmation between HBx and XIP --- p.42 / Chapter 2.10.1 --- "Transfection of pEGFP, pEGFP-HBx and pEGFP-XIP into HepG2" --- p.42 / Chapter 2.10.2 --- Yeast Two Hybrid System for Confirmation of HBx and XIP Interaction --- p.44 / Chapter 2.10.2.1 --- Preparation of Y187 Competent Cells --- p.44 / Chapter 2.10.2.2 --- Transformation of pGBKT7-HBx and pACT2-XIP into Y187 --- p.45 / Chapter 2.10.2.3 --- β-galactosidase Colony Lift Assay --- p.46 / Chapter Chapter 3 --- "Expression, Purification and Characterization of Hepatitis B Virus X Protein (HBx)" / Chapter 3.1 --- Introduction --- p.47 / Chapter 3.2 --- Construction of Recombinant HBx-pRSETA and 6xHis-HBx-pRSETA Plasmids --- p.48 / Chapter 3.3 --- Expression of 6xHis-HBx in E. coli C41 (DE3) using M9ZB Medium --- p.52 / Chapter 3.4 --- Expression of HBx in E. coli C41 (DE3) using M9ZB Medium --- p.54 / Chapter 3.5 --- Purification and Refolding of 6xHis-HBx Fusion Proteins --- p.56 / Chapter 3.6 --- Purification and Refolding of HBx Proteins --- p.60 / Chapter 3.7 --- Structural Characterization of Refolded HBx --- p.65 / Chapter 3.7.1 --- Introduction --- p.55 / Chapter 3.7.2 --- Experimental Analysis of HBx Secondary Structure --- p.66 / Chapter 3.7.3 --- Chemical Unfolding Experiment of HBx --- p.68 / Chapter 3.8 --- Discussion --- p.70 / Chapter 3.8.1 --- "HBx was Expressed, Purified and Characterized instead of 6xHis-HBx" --- p.71 / Chapter 3.8.2 --- High Concentration of DTT was used to Minimize Formation of HBx Aggregates --- p.72 / Chapter 3.8.3 --- Oxidative Refolding to Ensure Proper Disulfide Bond Formation --- p.73 / Chapter 3.8.4 --- Computational Prediction and Experimental Prediction of Secondary Structure of HBx --- p.75 / Chapter 3.9 --- Concluding Remarks --- p.77 / Chapter Chapter 4 --- "Expression, Purification and Characterization of HBx-lnteracting Protein (XIP)" / Chapter 4.1 --- Introduction --- p.78 / Chapter 4.2 --- Construction of Recombinant XIP-pET8C --- p.78 / Chapter 4.3 --- Expression of XIP in E. coli C41 (DE3) using M9ZB and M9 Mediums --- p.82 / Chapter 4.4 --- Screening of Chromatographic Conditions for the Purification of XIP --- p.83 / Chapter 4.4.1 --- Introduction --- p.83 / Chapter 4.4.2 --- Purification Details --- p.83 / Chapter 4.5 --- Purification of XIP by HiTrap Phenyl HP 5-ml Column --- p.87 / Chapter 4.6 --- Purification of XIP by HiLoad 26/60 Superdex 75 Prep Grade --- p.89 / Chapter 4.7 --- Structural Characterization of XIP --- p.92 / Chapter 4.7.1 --- CD Spectrum --- p.92 / Chapter 4.7.2 --- Chemical Denaturation Experiment of XIP --- p.93 / Chapter 4.7.3 --- Two-Dimensional Heteronuclear Nuclear Magnetic Resonance (NMR) Spectrum of 15N Labeled XIP --- p.95 / Chapter 4.8 --- Discussion --- p.97 / Chapter 4.8.1 --- Purification Method Development --- p.97 / Chapter 4.8.2 --- "Do Different Protein Cosolutes, Protein Stabilizers and Detergents Help XIP to Adopt a Stable Conformation?" --- p.99 / Chapter 4.9 --- Concluding Remarks --- p.101 / Chapter Chapter 5 --- In vivo Studies of HBx and XIP Interactions / Chapter 5.1 --- Investigation of Sub-Cellular Localization of HBx and XIP in Liver Cells --- p.102 / Chapter 5.1.1 --- Introduction --- p.102 / Chapter 5.1.2 --- "Construction of Recombinant HBx-pECFP-C1, HBx-pEGFP-C1, HBx-pEYFP-C1 and XIP-pECFP-C1, XIP-pEGFP-C1, XIP-pEYFP-C1" --- p.103 / Chapter 5.1.3 --- Transfection of pEGFP-C1 HBx and pEGFP-C1 XIP into HepG2 to Find Out HBx and XIP Sub-Cellular Localization --- p.106 / Chapter 5.1.3.1 --- Introduction --- p.107 / Chapter 5.1.3.2 --- Investigation of EGFP Proteins Expression using the Confocal Microscope and the Leica TCS Software --- p.108 / Chapter 5.1.4 --- Discussion and Future Prospects --- p.111 / Chapter 5.2 --- Interaction of HBx and XIP Studied by Yeast Two-Hybrid System --- p.113 / Chapter 5.2.1 --- Introduction --- p.113 / Chapter 5.2.2 --- Construction of Recombinant HBx-pGBKT7 and XIP-pACT2 Plasmids --- p.114 / Chapter 5.2.3 --- Confirmation of HBx and XIP Interaction by Yeast Two-Hybrid System --- p.117 / Chapter 5.2.4 --- Discussion --- p.121 / Chapter Chapter 6 --- Conclusion --- p.123 / Appendix I Sequence of HBx and XIP --- p.I / Chapter II --- Vector Sequences --- p.II / Chapter III --- Vector Maps --- p.VI / Chapter IV --- Electrophoresis Markers --- p.XI / Chapter V --- Agarose Gel Electrophoresis --- p.XII / Chapter VI --- SDS-PAGE Eectrophoresis --- p.XIII / Chapter VII --- Medium for Bacterial Culture --- p.XV / Chapter VIII --- Medium for Cell Culture --- p.XVII / Chapter IX --- Medium for Yeast Culture --- p.XVIII / Chapter X --- Buffers for Yeast Transformation --- p.XIX / Reference --- p.XX
3

Differential early gene expression in HBV X protein (HBx)-mediated hepatocarcinogenesis.

January 2002 (has links)
by Ray, Kit Ng. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 112-121). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgments --- p.iv / Abbreviations --- p.x / List of Figures --- p.xii / List of Tables --- p.xiv / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Hepatitis B Virus (HBV) --- p.1 / Chapter 1.2 --- Hepatitis B Virus X Protein (HBx) --- p.5 / Chapter 1.2.1 --- The Genomic Structure of HBx --- p.5 / Chapter 1.2.2 --- The HBx Protein Structure --- p.6 / Chapter 1.2.3 --- Subcellular Localization of HBx --- p.7 / Chapter 1.2.4 --- Possible Functions of HBx --- p.8 / Chapter 1.3 --- Etiology of Hepatocellular Carcinoma (HCC) --- p.12 / Chapter 1.4 --- Relationship between HCC and HBx --- p.13 / Chapter 1.5 --- Aims of Study --- p.14 / Chapter 1.6 --- The Basis of Tet-On System --- p.15 / Chapter 1.7 --- The Basis of DNA Microarray --- p.18 / Chapter 1.8 --- The Basis of Two-Dimensional Electrophoresis --- p.20 / Chapter Chapter 2 --- Materials and Methods / Chapter 2.1 --- Construction of a Tet-On HBx Expressing Cell Model --- p.22 / Chapter 2.1.1 --- Cloning of HBx Gene into pTRE2 Vector --- p.22 / Chapter 2.1.1.1 --- PCR of HBx Gene --- p.22 / Chapter 2.1.1.2 --- Purification of the PCR Product --- p.23 / Chapter 2.1.1.3 --- Restriction Enzyme Digestion --- p.23 / Chapter 2.1.1.4 --- Ligation of HBx into pTRE Vector --- p.24 / Chapter 2.1.1.5 --- Transformation of the Ligation Product into Competent Cells --- p.24 / Chapter 2.1.2 --- Preparation of the Plasmid DNA --- p.24 / Chapter 2.1.2.1 --- DNA Sequencing of the Cloned Plasmid DNA --- p.25 / Chapter 2.1.3 --- Cell Culture of AML12 Cell Line --- p.26 / Chapter 2.1.4 --- Transfection of pTet-On Vector into AML12 Cells --- p.26 / Chapter 2.1.5 --- Selection of the Transfected AML12 Cells by G418 --- p.27 / Chapter 2.1.6 --- Single Clone Isolation --- p.27 / Chapter 2.1.6.1 --- Luciferase Assay for Selection of Highly Inducible Clones --- p.28 / Chapter 2.1.7 --- Second Transfection of pTRE-HBx Plasmid --- p.28 / Chapter 2.1.8 --- Selection of the Transfected Cells by Hygromycin --- p.29 / Chapter 2.1.9 --- Second Single Clone Isolation --- p.29 / Chapter 2.1.10 --- Total RNA Isolation --- p.29 / Chapter 2.1.11 --- DNase I Digestion --- p.30 / Chapter 2.1.12 --- First-Strand cDNA Synthesis --- p.31 / Chapter 2.1.13 --- RT-PCR of HBx Gene --- p.31 / Chapter 2.1.14 --- Northern Blotting --- p.32 / Chapter 2.1.15 --- Preparation of the Probe --- p.33 / Chapter 2.1.16 --- Northern Blot Hybridization --- p.33 / Chapter 2.1.17 --- 3H-Thymidine Incorporation Assay --- p.34 / Chapter 2.1.18 --- Analysis of Cell Cycle by Flow Cytometry --- p.35 / Chapter 2.2 --- Microarray Analysis of Differential Gene Expression upon HBx Induction --- p.35 / Chapter 2.2.1 --- Sample Preparation for Microarray Analysis --- p.35 / Chapter 2.2.2 --- Probe Labelling --- p.36 / Chapter 2.2.3 --- Microarray Hybridization --- p.37 / Chapter 2.2.4 --- RT-PCR of the Candidate Genes --- p.38 / Chapter 2.2.5 --- Northern Blot Analysis of the Candidate Genes --- p.39 / Chapter 2.3 --- Two-Dimensional (2D) Gel Electrophoretic Analysis --- p.40 / Chapter 2.3.1 --- Protein Sample Preparation for 2D Gel Electrophoresis --- p.40 / Chapter 2.3.2 --- First-Dimension Isoelectric Focusing (IEF) --- p.40 / Chapter 2.3.3 --- Second-Dimension SDS-PAGE --- p.41 / Chapter 2.3.4 --- Silver Stain of 2D Gel --- p.42 / Chapter 2.3.5 --- Mass Spectroscopic Analysis --- p.43 / Chapter 2.4 --- Subcellular Localization of HBx --- p.44 / Chapter 2.4.1 --- Cloning of HBx into Green Fluorescent Protein (GFP) Expression Vector --- p.44 / Chapter 2.4.2 --- Transfection of GFP-HBx --- p.44 / Chapter 2.4.3 --- Propidium Iodide (PI) Staining --- p.45 / Chapter 2.4.4 --- Mitochondria Staining --- p.45 / Chapter 2.4.5 --- Subcellular Localization Study using Epi-Fluorescent Microscopy --- p.45 / Chapter 2.5 --- Analysis of Mitochondrial Transmembrane Potential --- p.46 / Chapter Chapter 3 --- Results / Chapter 3.1 --- Construction of Tet-On AML12 Cell Line of HBx Gene --- p.47 / Chapter 3.2 --- Characterization of the HBx-Expressing Cell Model --- p.53 / Chapter 3.2.1 --- 3H-Thymidine Proliferation Assay --- p.53 / Chapter 3.2.2 --- Cell Cycle Analysis --- p.55 / Chapter 3.3 --- Microarray Analysis of Differential Gene Expression Pattern upon HBx Induction --- p.57 / Chapter 3.4 --- Northern Blot Analysis and RT-PCR of the Candidate Genes --- p.65 / Chapter 3.5 --- Differential Protein Expression Pattern under HBx Induction --- p.70 / Chapter 3.6 --- Subcellular Localization of HBx --- p.77 / Chapter 3.7 --- Analysis of Mitochondrial Transmembrane Potential --- p.83 / Chapter Chapter 4 --- Discussion / Chapter 4.1 --- Conditional HBx-Expressing Cell Model --- p.84 / Chapter 4.2 --- The Effects of HBx in Clone X18 --- p.86 / Chapter 4.2.1 --- Proliferative Effect of HBx --- p.86 / Chapter 4.2.2 --- Deregulation of G2/M Checkpoint by HBx --- p.86 / Chapter 4.3 --- Early Differential Gene Expression due to HBx Induction --- p.88 / Chapter 4.4 --- The Relationship of the Potential Candidate Genes and Cancer Development --- p.90 / Chapter 4.5 --- The Protein Expression Pattern due to HBx Induction --- p.93 / Chapter 4.6 --- The Subcellular Localization of HBx --- p.96 / Chapter 4.7 --- The Possible Involvement of HBx in Mitochondrial Transmembrane Potential --- p.98 / Chapter 4.8 --- Conclusions --- p.101 / Chapter 4.9 --- Future Prospects --- p.104 / Appendix --- p.107 / References --- p.112
4

The role of cyclooxygenase-2 in chronic hepatitis B. / CUHK electronic theses & dissertations collection

January 2002 (has links)
Cheng Sze-Lok Alfred. / "March 2002." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (p. 175-211). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
5

Trans-acting elements required for the localization of bicoid mRNA.

January 2001 (has links)
Siu-wai Michael Sung. / Thesis submitted in: December 2000. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 97-111). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.ii / Abbreviations --- p.v / Table of Contents --- p.vii / Chapter Chapter 1 --- General Introduction / Chapter l. 1 --- Drosophila as a model for studying development --- p.1 / Chapter l .2 --- The formation of the body axis in Drosophila --- p.2 / Chapter l .3 --- Maternal genes are essential for development --- p.9 / Chapter 1.4 --- Maternal gene bicoid is essential for formation of the anterior structures in the embryo --- p.13 / Chapter 1.5 --- Establishment of an anterior to posterior bicoid protein gradient --- p.13 / Chapter 1.6 --- The bicoid protein gradient controls the downstream zygotic target genes in a concentration-dependent manner --- p.17 / Chapter 1.7 --- Bicoid protein acts as transcriptional regulators \9 --- p.19 / Chapter 1.8 --- Bicoid protein acts as transcriptional regulators --- p.21 / Chapter 1.9 --- The anterior localization of bcd mRNA --- p.21 / Chapter 1.10 --- Components required for bcd mRNA localization at anterior pole of oocyte / Chapter 1.10.1 --- Cis-acting elements --- p.22 / Chapter 1.10.1.1 --- BLE1 at 3' UTR directs localization of bcd mRNA --- p.23 / Chapter 1.10.2 --- Trans-acting elements / Chapter 1.10.2.1 --- "Exuperantia, swallow, and staufen are necessary for localization for bcd mKNA" --- p.27 / Chapter 1.10.2.2 --- exu protein is an absolute requirement for localization for bcd mRNA --- p.30 / Chapter 1.10.2.3 --- Microtubules dependence of localization --- p.31 / Chapter 1.11 --- Functions of exu in localization of bcd mRNA --- p.32 / Chapter 1.12 --- Characteristics of Bicoid protein and Bic-D gene --- p.33 / Chapter 1.13 --- Aim of Project --- p.36 / Chapter CHAPTER 2 --- Materials and Methods / Chapter 2.1 --- Fly Food --- p.37 / Chapter 2.2 --- Conditions in maintaining the fly stocks and working stocks --- p.37 / Chapter 2.3 --- Localization of exu protein and other intracellular elements by indirect immunofluorescence detection / Chapter 2.3.1 --- Immunohistrochemical distribution of exu and Bic-D protein --- p.38 / Chapter 2.3.2 --- Immunohistrochemical distribution of β-tubulin --- p.39 / Chapter 2.4 --- Preparation of total protein from the female and male flies --- p.41 / Chapter 2.5 --- Analysis of interactions between exu and trans-acting elements / Chapter 2.5.1 --- 35S-methionine metabolic labelling and immunoprecipitation by RIPA buffer --- p.41 / Chapter 2.5.2 --- 35S-methionine metabolic labelling and immunoprecipitation by Mach and Lehmann buffer system --- p.43 / Chapter 2.6 --- Co-immunoprecipitation of exu and Bic-D protein / Chapter 2.6.1 --- Co-immunoprecipitation of exu and Bic-D protein synthesized by in vitro coupled transcription and translation system with modified Mach and Lechmann buffer system --- p.44 / Chapter 2.7 --- in vivo ovary extract co-immunoprecipitation / Chapter 2.7.1 --- in vivo ovary extraction co-immunoprecipitation of exu and Bic-D protein with modified Mach and Lehmann buffer system supplemented with recombinant exu protein --- p.45 / Chapter CHAPTER 3 --- Results / Chapter 3.1 --- Analysis of co-localization of exu and Bic-D protein by double immuno-fluorescence staining on w1118 flies --- p.47 / Chapter 3.2 --- Analysis of co-localization of exu protein and β-tubulin protein by double immuno-fluorescence staining on w1118 flies --- p.51 / Chapter 3.3 --- Analysis of co-localization of exu and Bic-D protein by double immuno-fluorescence staining on Bic-D mutants --- p.55 / Chapter 3.4 --- Co-immunoprecipitation of exu and Bic-D protein synthesized by in vitro coupled transcription and translation system --- p.61 / Chapter 3.5 --- 35S-Methionine metabolic labelling and co-immunoprecipitation of exu and Bic-D protein with RIP A buffer system --- p.65 / Chapter 3.6 --- 35S-Methionine metabolic labelling and co-immunoprecipitation of exu and Bic-D protein with Mach and Lehmann buffer system --- p.68 / Chapter 3.7 --- in vivo ovary extract co-immunoprecipitation of exu and Bic-D protein with modified Mach and Lehmann buffer system supplemented with recombinant exu protein --- p.71 / Chapter CHAPTER 4 --- Discussion / Chapter 4.1 --- Analysis of co-localization of exu protein and other intracellular elements by indirect double immunofluorescence staining detection --- p.74 / Chapter 4.2 --- Analysis of co-localization of exu and BicD protein by double immuno- fluorescence staining on Bic-D mutants --- p.78 / Chapter 4.3 --- Co-immunoprecipitation of exu and BicD protein synthesized by in vitro coupled transcription and translation system --- p.79 / Chapter 4.4 --- Analysis of interactions between exu and trans-acting elements by 35S- Methionine metabolic labelling and immunoprecipitation --- p.82 / Chapter 4.5 --- "in vivo ovary extract coimmunoprecipitation of exu and Bic-D protein with modified Mech and Lehmann buffer system, supplemented with recombinant exu protein" --- p.84 / Chapter 4.6 --- Recent developments on the concept of ribonucleoprotein --- p.86 / Appendix A Supplementary protocols --- p.91 / Appendix B Reagents --- p.95 / Reference --- p.97

Page generated in 0.0947 seconds