• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the population of the 5:1 Neptune resonance

Pike, Rosemary Ellen 27 July 2016 (has links)
The recent discovery of objects near the 5:1 Neptune resonance prompts the study of the size, structure, and surface properties of this population to determine if these parameters are consistent with a ‘Nice model’ type evolution of the outer Solar System. Previous TNO discovery surveys have primarily targeted the ecliptic plane, where discovery of high inclination objects such as the 5:1 resonators is unlikely, and theoretical work on the evolution of the outer Solar System has focused on structure in and around the main Kuiper belt and largely ignored the distant resonant TNOs. I tracked these objects for several semesters, measured their positions accurately, and determined precise orbits. Integrating these orbits forward in time revealed that three objects are 5:1 resonators, and one object is not resonant but may have been resonant in the past. I constrained the structure of the 5:1 resonance population based on the three detections and determined that the minimum population in this resonance was much larger than expected, 1900(+3300,−1400) with H < 8. I compared this large population with the orbital distribution of TNOs resulting from a Nice model evolution and determined that the population in the real 5:1 resonance is ~20–100 times larger than the model predicts. However, the structure of the 5:1 resonance in this model was consistent with the orbital distribution I determined based on the detections. The orbital distribution of the scattering population in the Nice model is consistent with other models and survey results, leading to the conclusion that the 5:1 resonance cannot be a steady state transient population produced via resonance sticking from the scattering objects. To test the origin of the 5:1 resonators, I measured the objects’ surface colors in multiple wavelength ranges and compared their surface reflectance to TNOs from a large color survey, ColOSSOS. The 5:1 resonators have a consistent selection criteria to the TNOs from the ColOSSOS survey, so these samples have known selection biases and can be usefully compared to each other. The surfaces of the three 5:1 resonators showed three different spectral reflectance shapes, indicating that these three objects do not share a common formation location. The surface properties and orbital distribution of current 5:1 resonators are consistent with the remnant of a large captured population, partially resupplied by the scattering objects. However, the scattering event which produced this large 5:1 population remains unexplained. / Graduate
2

The Effect of Rayleigh-Taylor Instabilities on the Thickness of Undifferentiated Crust on Kuiper Belt Objects like Charon

January 2013 (has links)
abstract: In this thesis I model the thermal and structural evolution of Kuiper Belt Objects (KBOs) and explore their ability to retain undifferentiated crusts of rock and ice over geologic timescales. Previous calculations by Desch et al. (2009) predicted that initially homogenous KBOs comparable in size to Charon (R ~ 600 km) have surfaces too cold to permit the separation of rock and ice, and should always retain thick (~ 85 km) crusts, despite the partial differentiation of rock and ice inside the body. The retention of a thermally insulating, undifferentiated crust is favorable to the maintenance of subsurface liquid and potentially cryovolcanism on the KBO surface. A potential objection to these models is that the dense crust of rock and ice overlying an ice mantle represents a gravitationally unstable configuration that should overturn by Rayleigh-Taylor (RT) instabilities. I have calculated the growth rate of RT instabilities at the ice-crust interface, including the effect of rock on the viscosity. I have identified a critical ice viscosity for the instability to grow significantly over the age of the solar system. I have calculated the viscosity as a function of temperature for conditions relevant to marginal instability. I find that RT instabilities on a Charon-sized KBO require temperatures T > 143 K. Including this effect in thermal evolution models of KBOs, I find that the undifferentiated crust on KBOs is thinner than previously calculated, only ~ 50 km. While thinner, this crustal thickness is still significant, representing ~ 25% of the KBO mass, and helps to maintain subsurface liquid throughout most of the KBO's history. / Dissertation/Thesis / M.S. Astrophysics 2013

Page generated in 0.0396 seconds