• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multi-scale transactive control in interconnected bulk power systems under high renewable energy supply and high demand response scenarios

Chassin, David P. 06 December 2017 (has links)
This dissertation presents the design, analysis, and validation of a hierarchical transactive control system that engages demand response resources to enhance the integration of renewable electricity generation resources. This control system joins energy, capacity and regulation markets together in a unified homeostatic and economically efficient electricity operation that increases total surplus while improving reliability and decreasing carbon emissions from fossil-based generation resources. The work encompasses: (1) the derivation of a short-term demand response model suitable for transactive control systems and its validation with field demonstration data; (2) an aggregate load model that enables effective control of large populations of thermal loads using a new type of thermostat (discrete time with zero deadband); (3) a methodology for optimally controlling response to frequency deviations while tracking schedule area exports in areas that have high penetration of both intermittent renewable resources and fast-acting demand response; and (4) the development of a system-wide (continental interconnection) scale strategy for optimal power trajectory and resource dispatch based on a shift from primarily energy cost-based approach to a primarily ramping cost-based one. The results show that multi-layer transactive control systems can be constructed, will enhance renewable resource utilization, and will operate in a coordinated manner with bulk power systems that include both regions with and without organized power markets. Estimates of Western Electric Coordinating Council (WECC) system cost savings under target renewable energy generation levels resulting from the proposed system exceed US$150B annually by the year 2024, when compared to the existing control system. / Graduate
2

Transactive Control for Large-Scale Cyber-Physical Systems

Li, Sen January 2017 (has links)
No description available.
3

Market-based demand response integration in super-smart grids in the presence of variable renewable generation

Behboodi Kalhori, Sahand 25 April 2017 (has links)
Variable generator output levels from renewable energies is an important technical obstacle to the transition from fossil fuels to renewable resources. Super grids and smart grids are among the most effective solutions to mitigate generation variability. In a super grid, electric utilities within an interconnected system can share generation and reserve units so that they can produce electricity at a lower overall cost. Smart grids, in particular demand response programs, enable flexible loads such as plug-in electric vehicles and HVAC systems to consume electricity preferntially in a grid-friendly way that assists the grid operator to maintain the power balance. These solutions, in conjunction with energy storage systems, can facilitate renewable integration. This study aims to provide an understanding of the achievable benefits from integrating demand response into wholesale and retail electricity markets, in particular in the presence of significant amounts of variable generation. Among the options for control methods for demand response, market-based approaches provide a relatively efficient use of load flexibility, without restricting consumers' autonomy or invading their privacy. In this regard, a model of demand response integration into bulk electric grids is presented to study the interaction between variable renewables and demand response in the double auction environment, on an hourly basis. The cost benefit analysis shows that there exists an upper limit of renewable integration, and that additional solutions such as super grids and/or energy storage systems are required to go beyond this threshold. The idea of operating an interconnection in an unified (centralized) manner is also explored. The traditional approach to the unit commitment problem is to determine the dispatch schedule of generation units to minimize the operation cost. However, in the presence of price-sensitive loads (market-based demand response), the maximization of economic surplus is a preferred objective to the minimization of cost. Accordingly, a surplus-maximizing hour-ahead scheduling problem is formulated, and is then tested on a system that represents a 20-area reduced model of the North America Western Interconnection for the planning year 2024. The simulation results show that the proposed scheduling method reduces the total operational costs substantially, taking advantage of renewable generation diversity. The value of demand response is more pronounced when ancillary services (e.g. real-time power balancing and voltage/frequency regulation) are also included along with basic temporal load shifting. Relating to this, a smart charging strategy for plug-in electric vehicles is developed that enables them to participate in a 5-minute retail electricity market. The cost reduction associated with implementation of this charging strategy is compared to uncontrolled charging. In addition, an optimal operation method for thermostatically controlled loads is developed that reduces energy costs and prevents grid congestion, while maintaining the room temperature in the comfort range set by the consumer. The proposed model also includes loads in the energy imbalance market. The simulation results show that market-based demand response can contribute to a significant cost saving at the sub-hourly level (e.g. HVAC optimal operation), but not at the super-hourly level. Therefore, we conclude that demand response programs and super grids are complementary approaches to overcoming renewable generation variation across a range of temporal and spatial scales. / Graduate / 0791 / sahandbehboodi@gmail.com
4

Development and Implementation of Control Strategies for Effective Management of Distributed Energy Resources

Kini, Roshan Laxman January 2019 (has links)
No description available.
5

New Residential Thermostat for Transactive Systems

Chassin, David P. 16 December 2014 (has links)
This thesis presents a residential thermostat that enables accurate aggregate load control systems for electricity demand response. The thermostat features a control strategy that can be modeled as a linear time-invariant system for short-term demand response signals from the utility. This control design gives rise to linear time-invariant models of aggregate load control and demand response, which is expected to facilitate the design of more accurate load-based regulation services for electricity interconnections and enable integration of more highly variable renewable electricity generation resources. A key feature of the new thermostat design is the elimination of aggregate short-term load control error observed with existing real-time pricing thermostats as they respond to price signals. / Graduate / 0548 / 0791 / 0544 / dchassin@uvic.ca

Page generated in 0.0874 seconds