• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Translational regulation of genes in salmonella typhimurium by vitamin B12

Ravnum, Solveig January 2000 (has links)
<p>In this thesis I have studied the mechanism by which vitamin B12 regulates the expression of the <i>cob</i> operon and the <i>btuB</i> gene in <i>Salmonella typhimurium</i>. The <i>cob</i> operon encodes most of the 25 genes required for the <i>de novo</i> synthesis of vitamin B12, and the <i>butB</i> gene encodes the outer membrane protein needed for transport of exogenous vitamin B12 into the cell. Vitamin B12 is used as a cofactor in four enzymatic reactions in <i>Salmonella typhimurium</i>. The regulation by vitamin B12 of the <i>cob</i> operon and the <i>btuB</i> gene requires sequences in the long leader regions of the respective mRNAs. Proper folding of the reader mRNA is essential for normal repression, in particular a hairpin structure that sequesters the ribosomal binding site (RBS). The upstream leader region contains two conserved sequence elements that are required for the vitamin B12 regulation; the translational enhancer (TE) element element and the B12 box. The TE element confers its enhancer function by resolving the downstream inhibitory RBS hairpin through basepairing with nucleotides in the stem. In the presence of vitamin B12, either B12 itself, or a B12 regulatory factor binds to the upstream reader region and prevents the enhancer function. This will inhibit unfolding of the RBS hairpin and repress translation.</p>
2

Translational regulation of genes in salmonella typhimurium by vitamin B12

Ravnum, Solveig January 2000 (has links)
In this thesis I have studied the mechanism by which vitamin B12 regulates the expression of the cob operon and the btuB gene in Salmonella typhimurium. The cob operon encodes most of the 25 genes required for the de novo synthesis of vitamin B12, and the butB gene encodes the outer membrane protein needed for transport of exogenous vitamin B12 into the cell. Vitamin B12 is used as a cofactor in four enzymatic reactions in Salmonella typhimurium. The regulation by vitamin B12 of the cob operon and the btuB gene requires sequences in the long leader regions of the respective mRNAs. Proper folding of the reader mRNA is essential for normal repression, in particular a hairpin structure that sequesters the ribosomal binding site (RBS). The upstream leader region contains two conserved sequence elements that are required for the vitamin B12 regulation; the translational enhancer (TE) element element and the B12 box. The TE element confers its enhancer function by resolving the downstream inhibitory RBS hairpin through basepairing with nucleotides in the stem. In the presence of vitamin B12, either B12 itself, or a B12 regulatory factor binds to the upstream reader region and prevents the enhancer function. This will inhibit unfolding of the RBS hairpin and repress translation.

Page generated in 0.1062 seconds